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The problem

Find a rigid body movement to superimpose two sets of atoms:

xn

yn

T

U =
[
uij

]
⇒

Uxn, yn

Such that

E =
1

2

N∑
n=1

wn(Uxn − yn)
2 → min

where U =
[
uij

]
O
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equivalent to unconstrained refinement followed by judi- 
cious averaging - and we reject this as being of no advan- 
tage. Thus the efficacy of the C & D procedure rests on 
the difficulty of going from the constrained to the uncon- 
strained result in one cycle; the more difficult this is the 
nearer the C & D procedure is to strict constraints. A 
rough guess for a value of S would be in excess of 70%: 
the one cycle mentioned finds more than 70% of the total 
shift. With a value as high as this the usefulness of the 
C & D procedure is in grave doubt. 

In all the cases in my experience this figure has been in 
excess of 70%. An example, the first to hand in my files, 
is given by pyrazole. The residual Rw= "~wh(AFh) 2 varied 

h 
as in Table 1 where Rw improved by S = 9 0 %  in the first 
cycle after removing the constraints. 

If their procedure is to be established as worthwhile, 
Chesick & Davidon should perform detailed calculations 
to compare the results of their method with the strictly 
constrained and the unconstrained results. 

Table 1. Rw for pyrazole 

R w  

Constraint (a)* best value 254 
Constraint (b)* after 1 cycle 243 

after 2 cycles 241 
Unconstrained after 1 cycle 229 

after 2 cycles 228 
* See Pawley (1972). 
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A simple procedure is derived which determines a best rotation of a given vector set into a second vector 
set by minimizing the weighted sum of squared deviations. The method is generalized for any given metric 
constraint on the transformation. 

In various crystallographic situations the problem arises of 
finding a best rotation to fit a given atomic arrangement to 
approximately measured coordinates. Examples have been 
given by McLachlan (1972) and Diamond (1976). Diamond 
determines the best unconstrained transformation between 
the two sets of coordinates and factorizes it into a sym- 
metric and an orthogonal matrix. McLachlan finds a best 
rotation between the two sets of coordinates by an iterative 
process. The analysis below shows that a direct solution 
is also possible, despite the non-linear character of the 
problem. 

Let x, and y, (n= 1 , 2 , . . . , N )  be two given vector sets 
and w~ the weight corresponding to each pair x, ,y, .  The 
problem is then to find an orthogonal matrix U=(uu)  
which minimizes the function 

E= ½ ~ w,(Ux, - y,)2 (1) 
n 

subject to the constraints 

Uk~Ukj-- 6U = 0 (2) 
k 

where the 5u are the elements of the unit matrix. A trans- 
lation, if admitted, can always be removed from the prob- 
lem by shifting the centroids of the vector sets to the 
origin. 

Introducing a symmetric matrix k = (lu) of Lagrange mul- 
tipliers an auxiliary function (see, for example, Brand, 
1958) 

F= ½ .~. lu( ~, Uk,Ukj--fU) (3) 
z , j  k 

is constructed and added to E to form the Lagrangian 
function 

a = E +  F .  (4) 

Since for each different condition (2) an independent num- 
ber lu is available, the constrained minimum of E is now 
included among the free minima of G. A free minimum of 
G can only occur where 

c~a _ ~ .  u,k( ~. W,X,,kX,,j+ lkj)-- ~. w,y,ax,,j=O (5) 
~l lU  k n n 

and 

j 2 a  . . . .  ~m,( ~ W,,X.kX,,j+ &j) (6) 
t~llmk~UlJ n 

are the elements of a positive definite matrix. X,k and Ynk 
are the kth components of the vectors x, and y,. 

Let 
r u = ~. w,y, tx,j (7) 

n 

and 
su = Y w .x . , x . j  (8) 

n 

be the elements of a matrix R = (ru) and a symmetric ma- 
trix S = (su), respectively. For i=  m =  1 from equation (6), 
a minimum of the Lagrangian function G requires that 
S + k is positive definite, and - by rewriting equation (5) - 
that 

U. (S+ L)= R. (9) 

Horn (1987) “Closed-form solution of absolute orientation using unit
quaternions”
Kaindl et al. (1997) “Metric properties of the root-mean-square deviation
of vector sets”
Steipe (2002) “A revised proof of the metric properties of optimally
superimposed vector sets”
Chen et al. (2004) “RETRACTED: A strict solution for the optimal
superimposition of protein structures”

Saulius Gražulis The Kabsch algorithm (I) Vilnius, 2024 4 / 13



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The paper

922 S H O R T  C O M M U N I C A T I O N S  
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cious averaging - and we reject this as being of no advan- 
tage. Thus the efficacy of the C & D procedure rests on 
the difficulty of going from the constrained to the uncon- 
strained result in one cycle; the more difficult this is the 
nearer the C & D procedure is to strict constraints. A 
rough guess for a value of S would be in excess of 70%: 
the one cycle mentioned finds more than 70% of the total 
shift. With a value as high as this the usefulness of the 
C & D procedure is in grave doubt. 

In all the cases in my experience this figure has been in 
excess of 70%. An example, the first to hand in my files, 
is given by pyrazole. The residual Rw= "~wh(AFh) 2 varied 
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as in Table 1 where Rw improved by S = 9 0 %  in the first 
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to compare the results of their method with the strictly 
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where the 5u are the elements of the unit matrix. A trans- 
lation, if admitted, can always be removed from the prob- 
lem by shifting the centroids of the vector sets to the 
origin. 

Introducing a symmetric matrix k = (lu) of Lagrange mul- 
tipliers an auxiliary function (see, for example, Brand, 
1958) 

F= ½ .~. lu( ~, Uk,Ukj--fU) (3) 
z , j  k 

is constructed and added to E to form the Lagrangian 
function 

a = E +  F .  (4) 

Since for each different condition (2) an independent num- 
ber lu is available, the constrained minimum of E is now 
included among the free minima of G. A free minimum of 
G can only occur where 
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Let 
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and 
su = Y w .x . , x . j  (8) 
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be the elements of a matrix R = (ru) and a symmetric ma- 
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equivalent to unconstrained refinement followed by judi- 
cious averaging - and we reject this as being of no advan- 
tage. Thus the efficacy of the C & D procedure rests on 
the difficulty of going from the constrained to the uncon- 
strained result in one cycle; the more difficult this is the 
nearer the C & D procedure is to strict constraints. A 
rough guess for a value of S would be in excess of 70%: 
the one cycle mentioned finds more than 70% of the total 
shift. With a value as high as this the usefulness of the 
C & D procedure is in grave doubt. 

In all the cases in my experience this figure has been in 
excess of 70%. An example, the first to hand in my files, 
is given by pyrazole. The residual Rw= "~wh(AFh) 2 varied 

h 
as in Table 1 where Rw improved by S = 9 0 %  in the first 
cycle after removing the constraints. 

If their procedure is to be established as worthwhile, 
Chesick & Davidon should perform detailed calculations 
to compare the results of their method with the strictly 
constrained and the unconstrained results. 

Table 1. Rw for pyrazole 

R w  

Constraint (a)* best value 254 
Constraint (b)* after 1 cycle 243 

after 2 cycles 241 
Unconstrained after 1 cycle 229 

after 2 cycles 228 
* See Pawley (1972). 
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A simple procedure is derived which determines a best rotation of a given vector set into a second vector 
set by minimizing the weighted sum of squared deviations. The method is generalized for any given metric 
constraint on the transformation. 

In various crystallographic situations the problem arises of 
finding a best rotation to fit a given atomic arrangement to 
approximately measured coordinates. Examples have been 
given by McLachlan (1972) and Diamond (1976). Diamond 
determines the best unconstrained transformation between 
the two sets of coordinates and factorizes it into a sym- 
metric and an orthogonal matrix. McLachlan finds a best 
rotation between the two sets of coordinates by an iterative 
process. The analysis below shows that a direct solution 
is also possible, despite the non-linear character of the 
problem. 

Let x, and y, (n= 1 , 2 , . . . , N )  be two given vector sets 
and w~ the weight corresponding to each pair x, ,y, .  The 
problem is then to find an orthogonal matrix U=(uu)  
which minimizes the function 

E= ½ ~ w,(Ux, - y,)2 (1) 
n 

subject to the constraints 

Uk~Ukj-- 6U = 0 (2) 
k 

where the 5u are the elements of the unit matrix. A trans- 
lation, if admitted, can always be removed from the prob- 
lem by shifting the centroids of the vector sets to the 
origin. 

Introducing a symmetric matrix k = (lu) of Lagrange mul- 
tipliers an auxiliary function (see, for example, Brand, 
1958) 

F= ½ .~. lu( ~, Uk,Ukj--fU) (3) 
z , j  k 

is constructed and added to E to form the Lagrangian 
function 

a = E +  F .  (4) 

Since for each different condition (2) an independent num- 
ber lu is available, the constrained minimum of E is now 
included among the free minima of G. A free minimum of 
G can only occur where 

c~a _ ~ .  u,k( ~. W,X,,kX,,j+ lkj)-- ~. w,y,ax,,j=O (5) 
~l lU  k n n 

and 

j 2 a  . . . .  ~m,( ~ W,,X.kX,,j+ &j) (6) 
t~llmk~UlJ n 

are the elements of a positive definite matrix. X,k and Ynk 
are the kth components of the vectors x, and y,. 

Let 
r u = ~. w,y, tx,j (7) 

n 

and 
su = Y w .x . , x . j  (8) 

n 

be the elements of a matrix R = (ru) and a symmetric ma- 
trix S = (su), respectively. For i=  m =  1 from equation (6), 
a minimum of the Lagrangian function G requires that 
S + k is positive definite, and - by rewriting equation (5) - 
that 

U. (S+ L)= R. (9) 

Horn (1987) “Closed-form solution of absolute orientation using unit
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equivalent to unconstrained refinement followed by judi- 
cious averaging - and we reject this as being of no advan- 
tage. Thus the efficacy of the C & D procedure rests on 
the difficulty of going from the constrained to the uncon- 
strained result in one cycle; the more difficult this is the 
nearer the C & D procedure is to strict constraints. A 
rough guess for a value of S would be in excess of 70%: 
the one cycle mentioned finds more than 70% of the total 
shift. With a value as high as this the usefulness of the 
C & D procedure is in grave doubt. 

In all the cases in my experience this figure has been in 
excess of 70%. An example, the first to hand in my files, 
is given by pyrazole. The residual Rw= "~wh(AFh) 2 varied 

h 
as in Table 1 where Rw improved by S = 9 0 %  in the first 
cycle after removing the constraints. 

If their procedure is to be established as worthwhile, 
Chesick & Davidon should perform detailed calculations 
to compare the results of their method with the strictly 
constrained and the unconstrained results. 

Table 1. Rw for pyrazole 

R w  

Constraint (a)* best value 254 
Constraint (b)* after 1 cycle 243 

after 2 cycles 241 
Unconstrained after 1 cycle 229 

after 2 cycles 228 
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equivalent to unconstrained refinement followed by judi- 
cious averaging - and we reject this as being of no advan- 
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the difficulty of going from the constrained to the uncon- 
strained result in one cycle; the more difficult this is the 
nearer the C & D procedure is to strict constraints. A 
rough guess for a value of S would be in excess of 70%: 
the one cycle mentioned finds more than 70% of the total 
shift. With a value as high as this the usefulness of the 
C & D procedure is in grave doubt. 

In all the cases in my experience this figure has been in 
excess of 70%. An example, the first to hand in my files, 
is given by pyrazole. The residual Rw= "~wh(AFh) 2 varied 

h 
as in Table 1 where Rw improved by S = 9 0 %  in the first 
cycle after removing the constraints. 

If their procedure is to be established as worthwhile, 
Chesick & Davidon should perform detailed calculations 
to compare the results of their method with the strictly 
constrained and the unconstrained results. 
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set by minimizing the weighted sum of squared deviations. The method is generalized for any given metric 
constraint on the transformation. 
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finding a best rotation to fit a given atomic arrangement to 
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determines the best unconstrained transformation between 
the two sets of coordinates and factorizes it into a sym- 
metric and an orthogonal matrix. McLachlan finds a best 
rotation between the two sets of coordinates by an iterative 
process. The analysis below shows that a direct solution 
is also possible, despite the non-linear character of the 
problem. 

Let x, and y, (n= 1 , 2 , . . . , N )  be two given vector sets 
and w~ the weight corresponding to each pair x, ,y, .  The 
problem is then to find an orthogonal matrix U=(uu)  
which minimizes the function 

E= ½ ~ w,(Ux, - y,)2 (1) 
n 

subject to the constraints 

Uk~Ukj-- 6U = 0 (2) 
k 

where the 5u are the elements of the unit matrix. A trans- 
lation, if admitted, can always be removed from the prob- 
lem by shifting the centroids of the vector sets to the 
origin. 

Introducing a symmetric matrix k = (lu) of Lagrange mul- 
tipliers an auxiliary function (see, for example, Brand, 
1958) 

F= ½ .~. lu( ~, Uk,Ukj--fU) (3) 
z , j  k 

is constructed and added to E to form the Lagrangian 
function 

a = E +  F .  (4) 

Since for each different condition (2) an independent num- 
ber lu is available, the constrained minimum of E is now 
included among the free minima of G. A free minimum of 
G can only occur where 

c~a _ ~ .  u,k( ~. W,X,,kX,,j+ lkj)-- ~. w,y,ax,,j=O (5) 
~l lU  k n n 

and 

j 2 a  . . . .  ~m,( ~ W,,X.kX,,j+ &j) (6) 
t~llmk~UlJ n 

are the elements of a positive definite matrix. X,k and Ynk 
are the kth components of the vectors x, and y,. 

Let 
r u = ~. w,y, tx,j (7) 

n 

and 
su = Y w .x . , x . j  (8) 

n 

be the elements of a matrix R = (ru) and a symmetric ma- 
trix S = (su), respectively. For i=  m =  1 from equation (6), 
a minimum of the Lagrangian function G requires that 
S + k is positive definite, and - by rewriting equation (5) - 
that 

U. (S+ L)= R. (9) 
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Kaindl et al. (1997) “Metric properties of the root-mean-square deviation
of vector sets”
Steipe (2002) “A revised proof of the metric properties of optimally
superimposed vector sets”
Chen et al. (2004) “RETRACTED: A strict solution for the optimal
superimposition of protein structures”
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Methods

Least squares method
Function minimisation;
Method of Lagrange multipliers;
Eigenvalue theory
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The least squares method

E =
1

2

∑
n

wn(Uxn − yn)
2 → min

Subject to a constraint:

UTU = I, U =
[
uij

]
, I =

[
δij
]

i.e. ∑
k

ukiukj − δij = 0
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Function minimisation (1 variable)
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f(x) = f(x0) + f ′(x0)∆x +
1

2
f ′′(x0)∆x 2 + o(∆x 2)
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Function of multiple variables
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Lagrange multiplier method

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

∇⃗E = −λ∇⃗F

Saulius Gražulis The Kabsch algorithm (I) Vilnius, 2024 10 / 13



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Lagrange multiplier method

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

∇⃗E = −λ∇⃗F

Saulius Gražulis The Kabsch algorithm (I) Vilnius, 2024 10 / 13



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Thank you!

http://en.wikipedia.org/wiki/Topaz http://www.crystallography.net/2207377.html

A path to freedom: GNU → Linux → Ubuntu → MySQL → R → LATEX→ TikZ → Beamer

http://en.wikipedia.org/wiki/Topaz
http://www.crystallography.net/2207377.html
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