Coding Style

Code formatting

1.

Use 80-character wide lines. Fold long lines on math operators, assignments,
function arguments.

Use 4-space indentation for blocks.

. Use spaces, not tabs, to indent text. Configure your editor to replace tabs into

spaces, and to use 4-space tab stops.

Do not put space before the opening brace “(” in control structures and
function calls; always put a space after an opening brace, and before the
closing brace if the preceding character is not a brace (my style?).

Put spaces around operators in expressions, unless expressions extend for
more than one line. In the latter case, remove spaces consistently around the
highest-priority operators, so that a long expression is optically split, say, into
a sum of terms or similarly.

Use Perl manual style for formatting Perl control structures and procedures;
use the similar style (K&R with braces for even a single statement, or 1TBS)
for C.

I always put the C function return value type on the same line as the function
name; the GNU coding style, however, advocates specifying the return value
type on a separate line, so that function name starts at the column O of the
line. Both styles are good; use whatever is used in a file or a project, but use it
throughout the project consistently.

In all cases not mentioned, the GNU coding standards as described in the
GNU coding standards page
(http://www.gnu.org/prep/standards/standards.html) and the Gnome coding
style (http://developer.gnome.org/doc/guides/programming-guidelines/code-

style.html) apply.

Names

1.

Do not use abbreviations for variable names — 'hours' is a better variable name
than 'hrs'. Use only “well known” abbreviations, agreed upon in the project,
and document your abbreviations. Use your own abbreviations only for names
that are very common in your code, occur in complex expressions and
abbreviating them would make code more readable.

Select descriptive variable names.

3. Select descriptive function names, explaining what does the function do.

Prefix function name with a package name in languages that do not have
scoping such as old C.

Error messages

1. Use our internal standard for error message formatting. Basically, it is a GNU
error message format with slight changes to enhance parseability.

2. Error or warning reports should always contain:

1. the program name which user was using to invoke the code (but usually
not the subroutine name),

2. the name of the file that was being processed when the error happened,

3. the position within this file (line, data block name, column) where the error
was detected,

4. a short but comprehensive message describing what happened and how to
correct the situation,

5. if an error occurred in a system function call, include also the system error
message.

3. Use one function to format error and warning messages in one place.

Code commenting

1. Each function should have a one-two sentence comment describing in human
terms what does the function do, and any special interface requirements not
evident from the function signature (e.g.: for a C function, it should be
specified whether a char* string returned should be free()-ed or if it is static)

If a function can not be described in a simple and clear sentence, consider
redesigning the function interface altogether — probably something is wrong
with you function design.

2. Do not comment obvious things (such as: 'int i = O; /* i is initialized to zero
*/"). In such cases, the code is more readable than the comment, and the
comment will become incorrect if initialisation is changed to 'inti = 1' - the
bug that no C compiler will catch.

In other words, comments should be orthogonal to code.

3. Comments do not describe what is coded; they describe what should have
been coded.

4. Bear in mind that comments are not checked by the compiler, and will
probably be left alone when the code is changed. Thus, try to describe the
general, persistent features of the code, and not the transient details. Never
specify parameter types in the comments in a statically typed language, since
they are apparent from the function signature (but this might be appropriate
in a dynamically typed or untyped language). Rather, describe the “physical
meaning” of the parameters, the meaning that will not be changed (probably
because changing it would break too much of a the code).

5. Comments will probably stay around for a while after the code is changed, so

try to formulate them referring to context in which you write the comment, not
the context which the function will appear in the future. A comment like “this
function does not accept NULL pointer” will become incorrect when the
function is modified to accept NULL; the comment “as of version 1.1, the
function f() does not accept NULL pointer” will remain true even if function f{()
is changed in the version 2.0.

Single point of truth; code refactoring

1.

2.

Never repeat the same or related information in several places. Put it into one
place (variable, module) and make all other referents use that place.

If you want to copy a function and modify it slightly, never do this!
Instead, refactor the code so that all places use the same function. The
examples of the code refactoring are:

1. if you need a more general function, with a wider interface, transform the
specific function into a more general one (possibly by adding more
parameters), under a different name, and reimplement the old function by
a call to this new, more general one, passing a default or computed
parameter. If you language supports default parameters, and the old
function differs from the new one by fixing a value of some parameter,
make this parameter a default - in this case you will not even need a new
function;

2. If you need a slightly different interface to a function, make a versatile
function with complex interface to fit all cases, and then make simple
wrappers that provide a more simple interface and simply call that
complicated function with the appropriate parameters. The sever interfaces
can coexist for as long as needed.

3. If you need a slightly different code in the middle of a complex function,
split the function in three parts, and reused the pre-code and post-code to
implement two functions with that changed middle part;

. If code refactoring changes function's behaviour into the incompatible one,

never change the function behaviour alone, always change function name
as well. If there is a good reason to leave the old function name with the new
signature, first implement the new interface, make sure there are no calls to
the old function, and then (in a separate revision!) rename the function into
the old name. This is especially important for behaviour changes that are not
caught by the compiler as incompatibilities but in fact are such.

Functions, parameters and variables

1.

Global variables are evil. Avoid them as much as you can. All data should be
passed to functions as parameters. Use structures and objects of there are a
lot of variables to pass. Even if you need to introduce extra parameter in many
functions in a call chain, do this rather than introducing a global variable.

1. Global variables make code unmaintainable (virtually);
2. global variables make your code non-reenterable.

Actually, the only justified use of global variables in a new code is setting a
debug flag (and this flag should be local to a module, anyway).

2. Ideally, a function should behave like a, well, function - it should have no side
effect and only return values. In languages that support multiple return
values, use them rather than modification of a function parameter.

3. Avoid passing parameter that tells function what to do (e.g. do not use
parameters like 'change(int x, in task) /* task == 1 — change colour, task ==
— change shape */). If you do, your program slowly becomes a bytecode
interpreter of strange untyped values :). Rather, create two functions,
'‘change_colour(int x)' and 'change_shape(int x).

4. Do not force policy decisions in low level (toolbox) functions. If a low-level
subroutine needs to know the current policy (e.g. if and where it is allowed to
create temporary files, or whether to include debug information in error
reports), pass it extra parameter or receive return extra value, so that a top-
level caller can decide on the policy.

Asserts

1. Use asserts to check function pre-conditions. In particular, use asserts always
when a function would segfault if the asserted statement were false (e.g.
assert(p != NULL) or assert(p) before accessing p->val in C, if the p != NULL
is not obviously guaranteed by the code, say by the condition of the if() or
while() statement).

2. Use assert() from the Carp::Assert package or 'die unless ...' statements in Perl
as equivalents of the C assert() macro. Use them everywhere where the code
would fail if the condition is not satisfied, and the condition should always be
satisfied, regardless of input data or events.

	Coding Style
	Code formatting
	Names
	Error messages
	Code commenting
	Single point of truth; code refactoring
	Functions, parameters and variables
	Asserts

