

COURSE UNIT DESCRIPTION

Co	Course unit code					
Computer Architecture						
Lecturer(s)	course unit is delivered					
Coordinator: prof. dr. Saulius Gražulis Department of Compu				ence		
Other lecturers: - Faculty of Mathem			natics and Informatics			
		Vilnius University				
Cycle		Т	ype of the	e course unit		
1 st (BA)	Compulsory					
Mode of delivery Semester or period when the course L				anguage of instruction		

	unit is delivered	
Face-to-face/online	3 semester	Lithuanian, English

Prerequisites

Prerequisites: -

Number of credits allocated	Student's workload	Contact hours	Individual work
5	134	66	68

Purpose of the course unit:	programme competences to be developed
i ui pose oi the course unit.	programme competences to be developed

Purpose of the course unit:

to shape understanding of the real processing of computer programs as iterative transformation of memory data state using computer's instructions, to understand computer hardware implementation principles, to master the system of machine level notions, to learn read and write machine level software.

Generic competences:

- Ability to analyse and organise the information (*GK1*).
- Ability to apply the knowledge in practice (*GK2*).
- Ability to organise and plan the work, to work in a team as well as individually (*GK3*).

Specific competences:

Programming (SK6).

• Systems architecture (*SK7*).

Learning outcomes of the course unit: students will be able to	Teaching and learning methods	Assessment methods
operate computer architecture concepts and notions fluently and focused	Teaching methods:Lectures;Laboratory works.	Examination. Laboratory works presentation. Report.
understand computer systems diagnostic messages done in machine oriented terms understand influence of com- puter architecture on program performance and correctness	 Learning methods: Actual knowledge gathering and accumulation; Knowledge synthesis – generalization, abstraction and aggregation of actual knowledge; Knowledge analysis – new knowledge matching with aggregated knowledge, their verification and 	 Quiz. Criteria: Ability to solve practical exercises; Ability to develop, debug, trace, explain and modify
possess concepts needed to learn programming languages	 Application of aggregated and validated knowledge. 	 Ability to explain operation principles of computer and CPU components;

		Contact hours					Inc	lividual work: time and assignments	
Course content: breakdown of the topics	Lectures	Tutorials	Seminars	Practice	Laboratory work	Practical training	Contact hours	Individual work	Assignments
1. Introduction to Computer Architecture. Basic	2				2		4	4	I, II. Investigating logic
Computer structure. Switching circuits.									circuits and computer
2. Logic gates and combinational logic. Complete	2				2		4	4	components on
sets of logic functions, Post's theorem.									transistor and logic
3. Computer arithmetic. Positional systems and	2				2		4	4	level (using Logisim or similar simulation
number representation.	2				2		4	4	software);
4. Stateful computer elements. Triggers and re- gisters. Memory.	2				2		4	4	III, IV. Writing
5. The CPU data tract and its control. Finite state automata. Microprogramming.	2				2		4	4	programs in assembly language for various
6. Data representation in computers. Alternative	2				2		4	4	architectures and
integer and rational number representations. Char-	2				-		•	•	investigating their
acter data and character encodings. Unicode.									execution on simulation
7. Floating point numbers.	2				2		4	4	software.
8. Representation of variable size data. Advanced	2				2		4	4	
representations of numbers. Multiple precision arithmetic. Examples of CISC and RISC									
commands for number and character processing.									
9. Example of a CPU implementation. CPU control	2				2		4	4	
sequencer. Pipelines. Various types of computer									
architectures (Stack, Accumulator, Memory-									
Memory, Load-Store), CISC vs RISC. Zero, One,									
Two, Three address instructions.									-
10. RISC-V ISA	2				2		4	4	-
11. Assembler programming. Command	2				2		4	4	
mnemonics, operands, addressing modes, labels,									
sections, macroassembler. Compilation from high level languages (C).									
12. Pipelined architectures. Memory cache. RISC-	2				2		4	4	1
V emulator. Examples and analysis.					-		-	-	
13. CISC CPUs. x86 architecture example.	2				2		4	4	1
14. Virtual memory. Paging. Segmenting. Memory	2				2		4	4	1
protection.	-						-	-	
15. Microcontrollers. Example: AVR. Interrupts	2				2		4	4]
and interrupt handling. Peripheral devices: timers, ADC.									
16. Future, exotic, non-standard architectures:	2				2		4	4	1
ANN, tagged architectures, cell matrix, FPGA,									
FORTH machines. Hardware description									
languages.									
Self-preparation and exam							2	4	
Total	32				32		66	68	

Assessment strategy	Weight	Deadline	Assessment criteria
	%		
Lecture quizzes	10	Day of the lecture	4-question quiz covering several recent lectures (Bloom's
		or practical	1 an 2 level questions) using an electronic teaching
			environment (Moodle, Open edX or similar).

Assessment strategy	Weight %	Deadline	Assessment criteria
Intermediate quiz	15	Mid-term	Approx. 30-question quiz covering several recent lectures (<u>Bloom's</u> 1 to 9 level questions) using an electronic teaching environment (Moodle, Open edX or similar).
Evaluation of practical assignments	50	After each practical according to the schedule announced by the teacher of the practical	The practical work schedule and evaluation criteria are announced by the teacher of each group. The teacher who leads practical work grades it and communicates the assigned grade.
Analysis of an assigned computer architecture example	10	end of term	Students provide a written (4 pages, A4 format, 9pt) technical report on a computer architecture which they studied themselves, or 5 min oral presentation with slides on that architecture. The oral presentation is available for achieving students, with permission of the teaching professor, and may be accepted as a final exam.
Final exam	15	end of term	approx. 30-question quiz covering several recent lectures (<u>Bloom's</u> 1 to 9 level questions) using an electronic teaching environment (Moodle, Open edX or similar).
Tatal	100		 To be eligible for the exam, students must fulfil all following criteria: carry out at least one practical work and get a positive grade for the practicals; have enough accumulated points to be able to pass the exam in principle if they score maximum points at the exam quiz; students who have shown excellent performance during the term may be freed from the final exam quiz and given the opportunity to take exam ahead of the schedule and present their research on computer architectures as the oral presentation, provided: they collect at least 60% of all possible points during the theory course (e.g. at least 150 points from the 250 possible points from the intermediate exam and the lecture quizzes); they have carried out all practical assignments in the scheduled time; they have positive recommendations from the teacher of their practical team. If there are more students wishing to make oral presentations than the allocated time permits, students with higher grades will be given priority. Unless you are allowed to take exam ahead of the schedule, participation in the final exam quiz is obligatory to pass the course, regardless of the accumulated points.
Total	100		The final mark is obtained summing up all points obtained for each task, quiz or assignment, dividing them by 100 and rounding to the <i>higher</i> integer (i.e. 0.001 is rounded to 1.0; 9.1 is rounded to 10).

Assessment strategy	Weight %	Deadline	Assessment criteria
External students			Taking the exam as an external student is permitted by the decision of the lecturer coordinating the subject. As a rule, taking exam as an external student is permitted for very good students (with the academic average of at least 8) who are able to master the subject on their own and only need a knowledge assessment by a qualified VU representative. The requirements that apply to an external student are the same as those to a regular course attendee. A student applying for external student status may not have academic debts; only non-academic debts are permitted.

Author	Publ. year	Title	Number or volume	Publisher or URL
Required reading	ycai	1	volume	1
Andrew S. Tanenbaum	2005	Structured computer organization		Prentice Hall PTR, Fifth Edition
D. A. Patterson and J. L. Hennessy	2017	Computer Organization and Design: The Hardware/ Software Interface. RISC-V edition.		Elsevier
A. Waterman, Y. Lee, D. Patterson, and K. Asanović	2011	The RISC-V instruction set manual. Volume I: base user-level ISA. Version 1.0.	Vol. 1, ver. 1.0	https:// inst.eecs.berkeley.edu/ ~cs250/fa11/handouts/riscv- spec.pdf
Recommended reading				
Antanas Mitašiūnas	2016	Computer architecture. Teaching book (in Lithuanian Kompiuterių architektūra)		Vilnius, 126 p. http://www.mif.vu.lt/katedros/ cs/Asmen/Kompiuteriu %20architektura.pdf
D. E. Knuth	2005	MMIX – A RISC Computer for the New Millennium	Vol. 1, Fasc. 1	Addison–Wesley, http://www.mmix.cs.hm.edu/d oc/fasc1.pdf, https://www-cs- faculty.stanford.edu/~knuth/fa sc1.ps.gz
C. W. Kann	2016	Implementing a One Address CPU in Logisim		Gettysburg College; https://open.umn.edu/opentext books/textbooks/implementin g-a-one-address-cpu-in- logisim
C. W. Kann	2019	Digital Circuit Projects: An Overview of Digital Circuits Through Implementing Integrated Circuits	Second Edition	Gettysburg College; http://cupola.gettysburg.edu/o er/1
C. W. Kann	2019	Introduction To MIPS Assembly Language Programming		Gettysburg College; https://cupola.gettysburg.edu/ oer/2
M. J. Murdocca and V. P. Heuring	1999	Principles of Computer Architecture		Prentice Hall
D. A. Patterson and J. L. Hennessy	2013	Computer Organization and Design: The Hardware/Software Interface. MIPS edition.		Elsevier
E. Upton	2016	Learning Computer Architecture with Raspberry Pi		John Wiley & Sons
A. P. Malvino and J. A. Brown	1999	Digital Computer Electronics		McGraw-Hill

Author	Publ.	Title	Number or	Publisher or URL
	year		volume	
R. E. Bryant and D. R.	2001	Computer Systems: A	3rd Edition	https://github.com/
O'Hallaron		Programmer's Perspective		smellslikekeenspirit/an-
				askreddit-list-of-compsci-
				books/blob/master/Randal
				%20E.%20Bryant%2C
				%20David%20R.%200
				%E2%80%99Hallaron%20-
				%20Computer%20Systems.
				%20A%20Programmer
				%E2%80%99s
				%20Perspective%20%5B3rd
				%20ed.%5D%20(2016%2C
				%20Pearson).pdf
D. Goldberg	1991	What every computer		https://doi.org/
		scientist should know about		10.1145/103162.103163
		floating-point arithmetic		
J. L. Gustafson	2015	The End of Error: Unum		CRC Press
		Computing		