Cache-Oblivious Algorithms

By Matteo Frigo, Charles E. Leiserson, Harald Prokop, Sridhar Ramachandran

Why Cache-Oblivious Algorithms?

- Cache misses can be **expensive**.
- Not easy to optimize for all cache sizes.
- Cache-oblivious algorithms provide optimal cache-complexity regardless of cache properties.

Why Cache-Oblivious Algorithms?

Level	Size	Assoc.	Latency (ns)
Main	128 GB		50
LLC	30 MB	20	6
L2	256 KB	8	4
L1-d	32 KB	8	2
L1-i	32 KB	8	2

Figure 1: memory and cache access costs, from 6.172

Some Terminology

- Cache line: contiguous memory data imported to cache as a unit
- Cache size (Z): # cache words / cache
- Cache line size (L): # cache words / cache line
- Cache word typically 4 bytes, 8 bytes, etc.

Figure 2: simple cache diagram

Ideal-Cache Model

- 1 limited-size cache, unlimited memory
- Cache fully-associative
- Optimal offline replacement strategy
- Extra Assumption: cache is tall:

 $Z = \Omega(L^2)$

Figure 3: ideal-cache model

 0
 1
 2
 3
 4
 5
 6
 7

 8
 9
 10
 11
 12
 13
 14
 15

 16
 17
 18
 19
 20
 21
 22
 23

 24
 25
 26
 27
 28
 29
 30
 31

 32
 33
 34
 35
 36
 37
 38
 39

 40
 41
 42
 43
 44
 45
 46
 47

 48
 49
 50
 51
 52
 53
 54
 55

 56
 57
 58
 59
 60
 61
 62
 63

Figure 4: row-major order

- 1. let A, B, C be n x n matrices in row-major order
- 2. for i = 0 to n 1
- 3. **for** j = 0 to n 1
- 4. **for** k = 0 to n 1
- 5. C[i * n + j] = A[i * n + k] * B[k * n + j]

Figure 4: naive matrix multiplication

- Cache miss on each matrix access
- Cache Complexity: $Q(n) = \Theta(n^3)$

$$\label{eq:Where} {\sf Where} \quad n > c \frac{Z}{L} \quad {\rm for \ some \ c.}$$

• Can do better!

- 1. let A, B, C be n x n matrices in row-major order
- 2. for i = 0 to n 1

3. **for**
$$j = 0$$
 to $n - 1$

- 4. **for** k = 0 to n 1
- 5. C[i*n+j] = A[i*n+k]*B[k*n+j]

Figure 4: naive matrix multiplication

- Choose *s* s.t. $3 * s^2 \le Z$
- Cache Complexity:

$$Q(n)=(\frac{n}{s})^3*\Theta(\frac{s^2}{L})=\Theta(\frac{n^3}{\sqrt{Z}*L})$$

• Optimal cache complexity, but requires

knowledge of cache properties.

BLOCK-MULT
$$(A, B, C, n)$$

1 for $i \leftarrow 1$ to n/s
2 do for $j \leftarrow 1$ to n/s
3 do for $k \leftarrow 1$ to n/s
4 do ORD-MULT $(A_{ik}, B_{kj}, C_{ij}, s)$

Figure 5: block matrix multiplication

- Optimal cache complexity without knowing *L* or *Z*?
- Idea: Divide and Conquer!

Cache-Oblivious Matrix Multiplication

Split into $(\frac{n}{2}) \times (\frac{n}{2})$ block matrices and recurse:

$$\begin{pmatrix} \mathbf{C}_{11} & \mathbf{C}_{12} \\ \mathbf{C}_{21} & \mathbf{C}_{22} \end{pmatrix} = \begin{pmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{B}_{11} & \mathbf{B}_{12} \\ \mathbf{B}_{21} & \mathbf{B}_{22} \end{pmatrix}$$
$$= \begin{pmatrix} \mathbf{A}_{11}\mathbf{B}_{11} + \mathbf{A}_{12}\mathbf{B}_{21} & \mathbf{A}_{11}\mathbf{B}_{12} + \mathbf{A}_{12}\mathbf{B}_{22} \\ \mathbf{A}_{21}\mathbf{B}_{11} + \mathbf{A}_{22}\mathbf{B}_{21} & \mathbf{A}_{21}\mathbf{B}_{12} + \mathbf{A}_{22}\mathbf{B}_{22} \end{pmatrix}$$

Figure 6: block matrix multiplication

Analysis

• Work: $W(n) = 8W(\frac{n}{2}) + \Theta(1) \Longrightarrow W(n) = \Theta(n^3)$ Optimal!

1

• Cache Complexity:

$$Q(n) = \begin{cases} \Theta(\frac{n^2}{L}) & n^2 \leq cZ\\ 8 \times Q(\frac{n}{2}) + \Theta(1) & o/w \end{cases}$$

Which means $Q(n) = \Theta(\frac{n^3}{L \times \sqrt{Z}})$ Optimal!

Cache-Oblivious Matrix Multiplication

Non-square case: Split **A** or **B** along biggest dimension:

- If *m* > max(*n*, *p*):
- If *n* > max(*m*, *p*):
- If *p* > max(m, n):

$$\begin{pmatrix} A_1 \\ A_2 \end{pmatrix} B = \begin{pmatrix} A_1 B \\ A_2 B \end{pmatrix} , \begin{pmatrix} A_1 & A_2 \end{pmatrix} \begin{pmatrix} B_1 \\ B_2 \end{pmatrix} = A_1 B_1 + A_2 B_2 , A \begin{pmatrix} B_1 & B_2 \end{pmatrix} = (A B_1 & A B_2) .$$

Figure 7 : recursion cases for matrix multiplication

Cache-Oblivious Matrix Multiplication

Theorem 1 The REC-MULT algorithm uses $\Theta(mnp)$ work and incurs $\Theta(m + n + p + (mn + np + mp)/L + mnp/L\sqrt{Z})$ cache misses when multiplying an $m \times n$ matrix by an $n \times p$ matrix.

Why Tall-Cache Assumption?

- Cache misses bring full row-major submatrix rows + useless data
- Submatrix might not fit in cache even if $3 \times s^2 \leq Z$

Cache-Oblivious Matrix Transposition

Cache-Oblivious Matrix Transposition

- Idea: Divide and Conquer
- Transpose each half of matrix **A** individually

Cache-Oblivious Matrix Transposition

- Idea: Divide and Conquer
- Transpose each half of matrix **A** individually

$$A = \begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix}, B = A^T = \begin{bmatrix} A_1^T & A_3^T \\ A_2^T & A_4^T \end{bmatrix}$$

Figure 9: recursive transpose

Analysis

• Work:
$$W(n) = 4 \times W(\frac{n}{2}) + \Theta(1) \Longrightarrow W(n) = \Theta(n^2)$$

• Cache complexity:

$$Q(n) = \begin{cases} \Theta(\frac{n^2}{L}) & n^2 \leq cZ \\ 4 \times Q(\frac{n}{2}) + \Theta(1) & o/w \end{cases} \Longrightarrow Q(n) = \Theta(\frac{n^2}{L})$$

• Cache complexity optimal. Rectangular case similar to multiplication.

Cache-Oblivious FFT

- Want to use cache-oblivious transposition as subroutine.
- Cache complexity: $Q(n) = O(1 + (n/L)(1 + \log_Z n))$

Cache-Oblivious Sorting

Funnelsort

- 1. Split the input into $n^{1/3}$ contiguous arrays of size $n^{2/3}$, and sort these arrays recursively.
- 2. Merge the $n^{1/3}$ sorted sequences using a $n^{1/3}$ -merger, which is described below.
- Work: $\Theta(n \log n)$

Figure 10: funnel sort

k-Merger

- Suspends merging when output sequence "long enough"
- More details in next presentation

Figure 11: k-merger

Funnelsort Analysis

Lemma 6 If $Z = \Omega(L^2)$, then a k-merger operates with at most

$$Q_{\rm M}(k) = O(1 + k + k^3/L + k^3 \log_Z k/L)$$

cache misses.

$$\implies Q_M(n^{\frac{1}{3}}) = O(n \times \frac{\log_Z n}{L})$$

Funnelsort Analysis

•
$$Q(n) = n^{\frac{1}{3}} \times Q(n^{\frac{2}{3}}) + O(n \times \frac{\log_Z n}{L})$$

• Using induction:

$$Q(n) = O(\frac{n}{L} \times \log_Z n)$$

Distribution Sort

- $\Theta(n \log n)$ work. $Q(n) = O(\frac{n}{L} \times \log_Z n)$ cache complexity optimal

Distribution Sort

- 1. Partition *A* into \sqrt{n} contiguous subarrays of size \sqrt{n} . Recursively sort each subarray.
- 2. Distribute the sorted subarrays into q buckets B_1, \ldots, B_q of size n_1, \ldots, n_q , respectively, such that
 - 1. $\max \{x \mid x \in B_i\} \le \min \{x \mid x \in B_{i+1}\}$ for $i = 1, 2, \dots, q-1$.
 - 2. $n_i \le 2\sqrt{n}$ for i = 1, 2, ..., q.

(See below for details.)

- 3. Recursively sort each bucket.
- 4. Copy the sorted buckets to array *A*.

DISTRIBUTE(i, j, m)

1 **if** m = 1

4

5

6

- 2 **then** COPYELEMS(i, j)
- 3 **else** DISTRIBUTE(i, j, m/2)
 - DISTRIBUTE (i + m/2, j, m/2)
 - DISTRIBUTE(i, j + m/2, m/2)
 - DISTRIBUTE (i + m/2, j + m/2, m/2)

Lemma 12 Consider an algorithm that causes $Q^*(n; Z, L)$ cache misses on a problem of size n using a (Z, L) ideal cache. Then, the same algorithm incurs $Q(n; Z, L) \leq 2Q^*(n; Z/2, L)$ cache misses on a (Z, L) cache that uses LRU replacement.

LRU competitive with optimal replacement.

Corollary 13 For any algorithm whose cachecomplexity bound Q(n;Z,L) in the ideal-cache model satisfies the regularity condition

Q(n;Z,L) = O(Q(n;2Z,L)), (14)

the number of cache misses with LRU replacement is $\Theta(Q(n;Z,L))$.

- Inclusion property: cache level (i+1) contains all cache lines in level (i).
- Same-line elements in level (i) are same-line in level (i+1).
- More cache lines in level (i+1) than level (i).

Lemma 14 A (Z_i, L_i) -cache at a given level i of a multilevel LRU model always contains the same cache lines as a simple (Z_i, L_i) -cache managed by LRU that serves the same sequence of memory accesses.

Lemma 15 An optimal cache-oblivious algorithm whose cache complexity satisifies the regularity condition (14) incurs an optimal number of cache misses on each level³ of a multilevel cache with LRU replacement.

Lemma 16 A(Z,L) LRU-cache can be maintained using O(Z) memory locations such that every access to a cache line in memory takes O(1) expected time.

- Eliminates full-associativity and automatic replacement assumptions.
- Proof outline: hashtable doubly-linked list LRU cache implementation in memory. LRU policy in O(1) expected time.

Preliminary Experimental Analysis

Figure 12: N x N matrix transposition runtime / N^2

Preliminary Experimental Analysis

Figure 13: N x N matrix multiplication runtime / N^3

Strengths

- Novel approach to construct cache-efficient algorithms
- Plenty of detailed proofs for cache complexities

Weaknesses

- Hard to understand details of all proofs
- Could have presented experimental analysis of some same-work cache-oblivious vs cache-aware algorithms

Discussion Questions

- Are cache-oblivious algorithms more or less efficient than cache-aware algorithms?
- Does the recursion overhead overshadow the obtained cache efficiency?