Cache-Oblivious Algorithms

By Matteo Frigo, Charles E. Leiserson, Harald Prokop, Sridhar Ramachandran

Why Cache-Oblivious Algorithms?

e Cache misses can be expensive.
e Not easy to optimize for all cache sizes.

e Cache-oblivious algorithms provide optimal cache-complexity regardless of cache
properties.

Why Cache-Oblivious Algorithms?

Level Size | Assoc. | Latency

(ns)
Main 128GB 50
ELE 30 MB 20 6
L2 256 KB 8 4
L1-d 32KB 8 2
L1-i 32KB 8 2

Figure 1: memory and cache access costs, from 6.172

Some Terminology

e Cacheline: contiguous memory data imported to cache as a unit
e Cachesize (Z): # cache words / cache
e Cachelinesize (L): # cache words / cache line

e Cacheword typically 4 bytes, 8 bytes, etc.

Some Terminology Memory

0x0000
Cache 0x0004
0x0008

Z/L

Figure 2: simple cache diagram

Ideal-Cache Model Main

organized by = Memory

optimal replacement
strategy
e 1 limited-size cache, unlimited memory Cache
e Cache fully-associative CPU
e Optimal offline replacement strategy w%/rk
e Extra Assumption: cache is tall: Z/L Cache lines Qh
cachne
— O(T.2 Lines Misses
Z =L) of length L

Figure 3: ideal-cache model

Cache-Aware Matrix Multiplication

f 917 - .::-:' S 1. let A, B, C be n z n matrices in row-major order
1647151926-21-22-23 2. for i=0ton—1
242526 8-20-36-31 3. for j=0ton—1
32-33-343536-37-38-39
AGAAT A A4ATACAT 4. for k=0ton—-1
484950 3 CAEE 5. Clixn+j| = Ali*xn + k] x Blk xn + j]
3

5 ‘—'-‘: 0 |= O O O

Figure 4: naive matrix multiplication
Figure 4: row-major order

Cache-Aware Matrix Multiplication

e Cache miss on each matrix access

e Cache Comp|exity; (2(”) = (_‘_‘)(,’.113) 1. let A, B, C be n z n matrices in row-major order
2. for i=0ton—1
Z
Where n > (_:Z for somec. 3. for j=0ton—1
4. for k=0ton-—1
) ! it 3 : ;
Cando better 5. Clixn+j] = Alixn+ k| *x Bk *n + j]

Figure 4: naive matrix multiplication

Cache-Aware Matrix Multiplication

e Choose s sit. 3xs2< 7

e Cache Complexity:
- 2 A3

Qn) = (=)’ *O(F) = O(\/Z* 7

S L
e Optimal cache complexity, but requires

)

knowledge of cache properties.

BLOCK-MULT(A, B,C, n)
1 fori« 1ton/s
9 do for j« 1ton/s
3 do fork«+ 1ton/s
4 do ORD-MULT(Aj, By;,Cij,s)

Figure 5: block matrix multiplication

Cache-Aware Matrix Multiplication

e Optimal cache complexity without
knowingLorZ?

e |dea: Divide and Conquer!

Cache-Oblivious Matrix Multiplication

Splitinto (g) X (%) block matrices and

(Cll ClQ)
CQI C‘22

recurse:

(Au AIQ) . (Bu Bm)

A2 Az By Bao
A11B11 +A12Bs; Aj1Bio+ A15Bo
A21Bi1 +AxBa; As1Bio + AgsBoo

Figure 6: block matrix multiplication

Analysis

n

o Work: W(n)=8W(5)+6(1) = W(n) = 6(n*) Optimal
e Cache Complexity:
o) n? < cZ
Q(n) =
8x Q(3)+9O(1) of/w
n?

Whichmeans Q(n) = 6(

Cache-Oblivious Matrix Multiplication

Non-square case: Split A or B along biggest

dimension:

e |fm>max(n,p): (2;)3 = (ﬁig) ;

e If n>max(m, p): (A1 Ap) (31) = A
2

e Ifp>max(m,n): A(By B;) = (AB1 AB).

Figure 7 : recursion cases for matrix multiplication

Cache-Oblivious Matrix Multiplication

Theorem 1 The REC-MULT algorithm uses ©(mnp)
work and incurs ©(m+ n+ p+ (mn+ np + mp)/L +
mnp/L\/Z) cache misses when multiplying an m x n ma-
trix by an n X p matrix.

Why Tall-Cache Assumption?

Cache misses bring full row-major submatrix rows + useless data
Submatrix might not fitin cacheevenif 3 x s> < Z

S

<
<

>
»

Submatrix

Cache

A

L

Figure 8: short cache

\J

ZIL

Cache-Oblivious Matrix Transposition

Cache-Oblivious Matrix Transposition

e |dea: Divide and Conquer

e Transpose each half of matrix A individually

Cache-Oblivious Matrix Transposition

e |dea: Divide and Conquer

e Transpose each half of matrix A individually

Ao | g |
Ay Ay AT AT

Figure 9: recursive transpose

Analysis

n -

o Work: Wi(n)=4x ”(E) + 0(1) = W(n) = 6(n?

e Cache complexity: (
O(5%) n? < cZ "2

L — Q(n) = 6(%)
\4 X Q(3)+6(1) o/w

e Cache complexity optimal. Rectangular case similar to multiplication.

Cache-Oblivious FFT

e Want to use cache-oblivious transposition as subroutine.

e Cachecomplexity: Q(n) =0O(1+ (n/L)(1+ log,n))

Cache-Oblivious Sorting

Funnelsort

1. Split the input into n'/ contiguous arrays of size < nZ

n?/3, and sort these arrays recursively. .
2. Merge the n'/? sorted sequences using a n'/3-

merger, which is described below.) 1]

Recurse L 4 .
; n3 -merger
Work: ©(nlogn) v
Sorted A

Figure 10: funnel sort

k-Merger

e Suspends merging when output sequence
“long enough”

e More details in next presentation

k-merger

Figure 11: k-merger

Funnelsort Analysis

Lemma 6 If Z = Q(L?), then a k-merger operates with
at most

Qm(k) = 0(1+ k+ k3/L + k3log, k/L)

cache misses.

1 log, n

= Qu(n3) = O(n x e

)

Funnelsort Analysis

log, n

® Qn)= n3 x Q(n%) + O(n X 7)

e Usinginduction:
n

Qn) = O(_z X log, n)

Distribution Sort

e O(nlogn) work.
n
o (Qn)= O(E x log,n) cache complexity - optimal

Distribution Sort

1. Partition A into /n contiguous subarrays of size DISTRIBUTE(i, j, m)
\/n. Recursively sort each subarray. 1 ifm=1
2. Distribute the sorted subarrays into q buckets 2 then COPYELEMS(], j)
By,...,Bg of size ny, ..., ng, respectively, such that 3 else DISTRIBUTE(i,j,m/2)
1. max{x|x € Bj} < min{x | x € Bj;+;} fori = 4 DISTRIBUTE(’_-}T m/2,j,m/2)
1.2,....8=1 5 DISTRIBUTE(i, j+m/2,m/2)
sy 6 DISTRIBUTE (i 4+ m/2, j+m/2,m/2)

2, My hitari= 1,24

(See below for details.)
3. Recursively sort each bucket.
4. Copy the sorted buckets to array A.

Theoretical Justifications for the Ideal Cache
Model

Lemma 12 Consider an algorithm that causes
Q*(n;Z,L) cache misses on a problem of size n using
a (Z,L) ideal cache. Then, the same algorithm incurs
Q(n;Z,L) < 2Q*(n;Z/2,L) cache misses on a (Z,L)
cache that uses LRU replacement.

LRU competitive with optimal replacement.

Theoretical Justifications for the Ideal Cache
Model

Corollary 13 For any algorithm whose cache-
complexity bound Q(n;Z,L) in the ideal-cache model
satisfies the reqularity condition

Q(n;Z,L) = 0(Q(n;2Z,L)) , (14)

the number of cache misses with LRU replacement is
©(Q(n;Z,L)).

Theoretical Justifications for the Ideal Cache
Model

e Inclusion property: cache level (i+1) contains all cache lines in
level (i).

e Same-line elements in level (i) are same-linein level (i+1).

e More cachelinesin level (i+1) than level (i).

Theoretical Justifications for the Ideal Cache
Model

Lemma 14 A (Z;,L;)-cache at a given level i of a mul-
tilevel LRU model always contains the same cache lines
as a simple (Z;,L;)-cache managed by LRU that serves
the same sequence of memory accesses. [

Lemma 15 An optimal cache-oblivious algorithm
whose cache complexity satisifies the regularity condi-
tion (14) incurs an optimal number of cache misses on
each level® of a multilevel cache with LRU replacement.

Theoretical Justifications for the Ideal Cache
Model

Lemma 16 A (Z,L) LRU-cache can be maintained us-
ing O(Z) memory locations such that every access to a
cache line in memory takes O(1) expected time.

e Eliminates full-associativity and automatic replacement
assumptions.

e Proof outline: hashtable - doubly-linked list LRU cache
implementation in memory. LRU policy in O(1) expected time.

Preliminary Experimental Analysis

= 025 T T T o T
S iterative o 4 ®
§ 0.2 I recursive + “
g 0.15
S
é 0.1
()]
£ 0.05
oo
0 200 400 600 800 1000 1200

Figure 12: N x N matrix transposition runtime / N*2

Preliminary Experimental Analysis

Time (microseconds)

0.12
0.1

0.08 -

0.06
0.04
0.02

0

1

B B B B B B o o B B B B e o e e e e S S

- iterative © o 7
recursive + o o |
o © b
o &
& o o 00 X0 R 09 00
R Q0> 0 R0 P
Q000000 Q0000 X0 =

| | | |

1

0

100

200 300 400 500
N

Figure 13: N x N matrix multiplication runtime / N*3

600

Strengths

e Novel approach to construct cache-efficient algorithms

e Plenty of detailed proofs for cache complexities

Weaknesses

e Hardtounderstand details of all proofs
e Could have presented experimental analysis of some same-work

cache-oblivious vs cache-aware algorithms

Discussion Questions

e Are cache-oblivious algorithms more or less efficient than
cache-aware algorithms?

e Doestherecursion overhead overshadow the obtained cache
efficiency?

