
Cache-Oblivious Algorithms

By Matteo Frigo, Charles E. Leiserson, Harald Prokop, Sridhar Ramachandran

Why Cache-Oblivious Algorithms?

● Cache misses can be expensive.

● Not easy to optimize for all cache sizes.

● Cache-oblivious algorithms provide optimal cache-complexity regardless of cache

properties.

Why Cache-Oblivious Algorithms?

Figure 1: memory and cache access costs, from 6.172

Some Terminology

● Cache line: contiguous memory data imported to cache as a unit

● Cache size (Z): # cache words / cache

● Cache line size (L): # cache words / cache line

● Cache word typically 4 bytes, 8 bytes, etc.

Figure 2: simple cache diagram

Some Terminology

Z/L

Ideal-Cache Model

● 1 limited-size cache, unlimited memory

● Cache fully-associative

● Optimal offline replacement strategy

● Extra Assumption: cache is tall:

Figure 3: ideal-cache model

Cache-Aware Matrix Multiplication

Figure 4: naive matrix multiplication
Figure 4: row-major order

Cache-Aware Matrix Multiplication

● Cache miss on each matrix access

● Cache Complexity:

Where for some c.

● Can do better!

Figure 4: naive matrix multiplication

Cache-Aware Matrix Multiplication

● Choose s s.t.

● Cache Complexity:

● Optimal cache complexity, but requires

knowledge of cache properties.

Figure 5: block matrix multiplication

Cache-Aware Matrix Multiplication

● Optimal cache complexity without

knowing L or Z ?

● Idea: Divide and Conquer!

Cache-Oblivious Matrix Multiplication

Figure 6: block matrix multiplication

Split into block matrices and

recurse:

Analysis

● Work: Optimal!

● Cache Complexity:

Which means Optimal!

Cache-Oblivious Matrix Multiplication

Non-square case: Split A or B along biggest

dimension:

● If m > max(n, p):

● If n > max(m, p):

● If p > max(m, n):

Figure 7 : recursion cases for matrix multiplication

Cache-Oblivious Matrix Multiplication

Why Tall-Cache Assumption?

● Cache misses bring full row-major submatrix rows + useless data

● Submatrix might not fit in cache even if

Figure 8: short cache

Cache-Oblivious Matrix Transposition

Cache-Oblivious Matrix Transposition

● Idea: Divide and Conquer

● Transpose each half of matrix A individually

Cache-Oblivious Matrix Transposition

● Idea: Divide and Conquer

● Transpose each half of matrix A individually

Figure 9: recursive transpose

Analysis

● Work:

● Cache complexity:

● Cache complexity optimal. Rectangular case similar to multiplication.

Cache-Oblivious FFT

● Want to use cache-oblivious transposition as subroutine.

● Cache complexity:

Cache-Oblivious Sorting

Funnelsort

Figure 10: funnel sort

Work:

k-Merger

● Suspends merging when output sequence

“long enough”

● More details in next presentation

Figure 11: k-merger

Funnelsort Analysis

Funnelsort Analysis

●

● Using induction:

Distribution Sort

● work.

● cache complexity - optimal

Distribution Sort

Theoretical Justifications for the Ideal Cache
Model

LRU competitive with optimal replacement.

Theoretical Justifications for the Ideal Cache
Model

Theoretical Justifications for the Ideal Cache
Model
● Inclusion property: cache level (i+1) contains all cache lines in

level (i).

● Same-line elements in level (i) are same-line in level (i+1).

● More cache lines in level (i+1) than level (i).

Theoretical Justifications for the Ideal Cache
Model

Theoretical Justifications for the Ideal Cache
Model

● Eliminates full-associativity and automatic replacement

assumptions.

● Proof outline: hashtable - doubly-linked list LRU cache

implementation in memory. LRU policy in O(1) expected time.

Preliminary Experimental Analysis

Figure 12: N x N matrix transposition runtime / N^2

Preliminary Experimental Analysis

Figure 13: N x N matrix multiplication runtime / N^3

Strengths

● Novel approach to construct cache-efficient algorithms

● Plenty of detailed proofs for cache complexities

Weaknesses

● Hard to understand details of all proofs

● Could have presented experimental analysis of some same-work

cache-oblivious vs cache-aware algorithms

Discussion Questions

● Are cache-oblivious algorithms more or less efficient than

cache-aware algorithms?

● Does the recursion overhead overshadow the obtained cache

efficiency?

