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What is a processor architecture?

Architecture visible to programmer:
The CPU registers visible to programmer
Memory addressing
Data formats
Processor instruction set
Input-output
Interrupt processing
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A bit of history

September 1990 Order Number: 231455-005

8086
16-BIT HMOS MICROPROCESSOR

8086/8086-2/8086-1

Y Direct Addressing Capability 1 MByte
of Memory

Y Architecture Designed for Powerful
Assembly Language and Efficient High
Level Languages

Y 14 Word, by 16-Bit Register Set with
Symmetrical Operations

Y 24 Operand Addressing Modes

Y Bit, Byte, Word, and Block Operations

Y 8 and 16-Bit Signed and Unsigned
Arithmetic in Binary or Decimal
Including Multiply and Divide

Y Range of Clock Rates:
5 MHz for 8086,
8 MHz for 8086-2,

10 MHz for 8086-1

Y MULTIBUS System Compatible
Interface

Y Available in EXPRESS
Ð Standard Temperature Range
Ð Extended Temperature Range

Y Available in 40-Lead Cerdip and Plastic
Package
(See Packaging Spec. Order Ý231369)

The Intel 8086 high performance 16-bit CPU is available in three clock rates: 5, 8 and 10 MHz. The CPU is
implemented in N-Channel, depletion load, silicon gate technology (HMOS-III), and packaged in a 40-pin
CERDIP or plastic package. The 8086 operates in both single processor and multiple processor configurations
to achieve high performance levels.

231455–1
Figure 1. 8086 CPU Block Diagram

231455–2

40 Lead

Figure 2. 8086 Pin

Configuration

Downloaded from www.Manualslib.com manuals search engine 

(Intel 1990)

1974 8080 8-bit; Addr: 16 bit (64K)
1978 8086, 8088 16-bit; Addr: 20 bit (1MB)
1982 Intel® 286 16-bit (protected memory);
Addr: 24 bit (16MB)
1985 Intel386TM 32-bit; Addr: 32 bit (4GB);
1989 Intel486TM 32-bit (+FPU, more instr.);
Addr: 32 bit (4GB);
1993 Intel® Pentium® 32-bit (faster, more
instr.); Addr: 32 bit (4GB);
1995-1999 The P6 Family of Processors 32-bit;
Addr: 32 bit (4GB);
1999 AMD Opteron 64-bit; Addr: up to 64
bit
2001-2007 The Intel® Xeon® 64-bit, Addr: up
to 64 bit.

(Intel 2020)
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Notational Conventions

#GP(0) An instruction exception—in this example, a
general-protection exception with error code of 0.
1011b A binary value—in this example, a 4-bit value.
DEAD_BEEFh A hexadecimal value. Underscore characters
may be inserted to improve readability.
128 Decimal number, unless the context indicates
otherwise.
7:4 A bit range, from bit 7 to 4, inclusive. The high-order bit
is shown first. Commas may be inserted to indicate gaps.
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Registers (x86) – history: 8008
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Registers (x86) – history: 8080

Intel 8080 CPU
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Registers (x86)

Intel 8086 CPU

(Intel 1979)

https://www.youtube.com/watch?v=7xwjjolDnwg
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Registers (80386)

Intel 80386 CPU

https://www.youtube.com/watch?v=7xwjjolDnwg
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Registers (x86_64)

2 Overview of the AMD64 Architecture

AMD64 Technology 24592—Rev. 3.22—December 2017

Figure 1-1. Application-Programming Register Set

Table 1-1. Operating Modes

Operating Mode
Operating 

System Required

Application 
Recompile 
Required

Defaults

Register 
Extensions

Typical

 Address
Size 
(bits)

Operand 
Size 
(bits)

GPR
Width (bits)

Long 
Mode

64-Bit 
Mode

64-bit OS

yes 64
32

yes 64

Compatibility
Mode

no
32

no
32

16 16 16

Legacy 
Mode

Protected
Mode

Legacy 32-bit OS

no

32 32

no

32
16 16

Virtual-8086 
Mode

16 16 16
Real
Mode

Legacy 16-bit OS

513-101 ymm.eps

Flags Register

Instruction Pointer

General-Purpose
Registers (GPRs)

64-Bit Media and
Floating-Point Registers

Legacy x86 registers, supported in all modes

63 0 63 0

63 0

79 0

Register extensions, supported in 64-bit mode

RAX

RBX

RCX

RDX

RBP

RSI

RDI

RSP

R8

R9

R10

R11

R12

R13

R14

R15

MMX0/FPR0

MMX1/FPR1

MMX2/FPR2

MMX3/FPR3

MMX4/FPR4

MMX5/FPR5

MMX6/FPR6

MMX7/FPR7

0 RFLAGS

RIP

EFLAGS

EIP

SSE Media
Registers

Application-programming registers not shown include
Media eXension Control and Status Register (MXCSR) and
x87 tag-word, control-word, and status-word registers 

255 0

YMM/XMM0

YMM/XMM1

YMM/XMM2

YMM/XMM3

YMM/XMM4

YMM/XMM5

YMM/XMM6

YMM/XMM7

YMM/XMM8

YMM/XMM9

YMM/XMM10

YMM/XMM11

YMM/XMM12

YMM/XMM13

YMM/XMM14

YMM/XMM15

127

(AMD 2017), here and further: reproduced with AMD permission
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Segmented addressing

Segment address is shifted by 4 bits and added to the offset:
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Memory layout

x86_64 CPU

10 Memory Model

AMD64 Technology 24592—Rev. 3.22—December 2017

 

Figure 2-1. Virtual-Memory Segmentation

Operating systems have used segmented memory as a method to isolate programs from the data they 
used, in an effort to increase the reliability of systems running multiple programs simultaneously. 
However, most modern operating systems do not use the segmentation features available in the legacy 
x86 architecture. Instead, these operating systems handle segmentation functions entirely in software. 
For this reason, the AMD64 architecture dispenses with most of the legacy segmentation functions in 
64-bit mode. This allows 64-bit operating systems to be coded more simply, and it supports more 
efficient management of multi-tasking environments than is possible in the legacy x86 architecture. 

2.1.2  Segment Registers

Segment registers hold the selectors used to access memory segments. Figure 2-2 on page 11 shows 
the application-visible portion of the segment registers. In legacy and compatibility modes, all 
segment registers are accessible to software. In 64-bit mode, only the CS, FS, and GS segments are 
recognized by the processor, and software can use the FS and GS segment-base registers as base 
registers for address calculation, as described in “FS and GS as Base of Address Calculation” on 
page 17. For references to the DS, ES, or SS segments in 64-bit mode, the processor assumes that the 
base for each of these segments is zero, neither their segment limit nor attributes are checked, and the 
processor simply checks that all such addresses are in canonical form, as described in “64-Bit 
Canonical Addresses” on page 15. 

513-107.eps

264 - 1

0

Base Address for
All Segments

Code Segment (CS) Base

Stack Segment (SS) Base

Data Segment (DS) Base

64-Bit Mode
(Flat Segmentation Model)

Legacy and Compatibility Mode
(Multi-Segment Model)

232 - 1

0

data

code

stack

(AMD 2017)
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Segment Registers

x86, 86_64 CPU

Memory Model 11
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Figure 2-2. Segment Registers

For details on segmentation and the segment registers, see “Segmented Virtual Memory” in Volume 2. 

2.1.3  Physical Memory

Physical memory is the installed memory (excluding cache memory) in a particular computer system 
that can be accessed through the processor’s bus interface. The maximum size of the physical memory 
space is determined by the number of address bits on the bus interface. In a virtual-memory system, the 
large virtual-address space (also called linear-address space) is translated to a smaller physical-
address space by a combination of segmentation and paging hardware and software. 

Segmentation is illustrated in Figure 2-1 on page 10. Paging is a mechanism for translating linear 
(virtual) addresses into fixed-size blocks called pages, which the operating system can move, as 
needed, between memory and external storage media (typically disk). The AMD64 architecture 
supports an expanded version of the legacy x86 paging mechanism, one that is able to translate the full 
64-bit virtual-address space into the physical-address space supported by the particular 
implementation. 

2.1.4  Memory Management

Memory management strategies translate addresses generated by programs into addresses in physical 
memory using segmentation and/or paging. Memory management is not visible to application 
programs. It is handled by the operating system and processor hardware. The following description 
gives a very brief overview of these functions. Details are given in “System-Management 
Instructions” in Volume 2. 

513-312.eps

15 0

ES

FS

GS

SS

CS

DS

15 0

FS
(Base only)

GS
(Base only)

CS
(Attributes only)

Legacy Mode and
Compatibility Mode

64-Bit
Mode

ignored

ignored

ignored

(AMD 2017)
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Legacy mode memory management

x86, 86_64 CPU

Memory Model 13
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2.1.4.2  Legacy-Mode Memory Management

Figure 2-4 on page 13 shows the memory-management functions performed in the three submodes of 
legacy mode.
 

Figure 2-4. Legacy-Mode Memory Management

The memory-management functions differ, depending on the submode, as follows:

• Protected Mode—Protected mode supports 16-bit and 32-bit programs with table-based memory 
segmentation, paging, and privilege-checking. The segmentation function takes 32-bit effective 
addresses and 16-bit segment selectors and produces 32-bit linear addresses into one of 16K 
memory segments, each of which can be up to 4GB in size. Paging is optional. The 32-bit physical 
addresses are either produced by the paging function or the linear addresses are used without 
modification as physical addresses. 

• Virtual-8086 Mode—Virtual-8086 mode supports 16-bit programs running as tasks under 
protected mode. 20-bit linear addresses are formed in the same way as in real mode, but they can 
optionally be translated through the paging function to form 32-bit physical addresses that access 
up to 4GB of memory space. 

• Real Mode—Real mode supports 16-bit programs using register-based shift-and-add 
segmentation, but it does not support paging. Sixteen-bit effective addresses are zero-extended and 
added to a 16-bit segment-base address that is left-shifted four bits, producing a 20-bit linear 

513-185.eps

031

Protected Mode

031

Paging

Physical Address (PA)

Linear Address

Virtual-8086 Mode

019

031

Paging

Linear Address

Physical Address (PA)

Real Mode

019

19 031

Linear Address

0 PA

Segmentation

031015

Effective Address (EA)Selector

015

EA

Segmentation

015

Selector

015

EA

Segmentation

015

Selector

(AMD 2017)
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12 Memory Model

AMD64 Technology 24592—Rev. 3.22—December 2017

2.1.4.1  Long-Mode Memory Management

Figure 2-3 shows the flow, from top to bottom, of memory management functions performed in the 
two submodes of long mode. 
 

Figure 2-3. Long-Mode Memory Management

In 64-bit mode, programs generate virtual (linear) addresses that can be up to 64 bits in size. The 
virtual addresses are passed to the long-mode paging function, which generates physical addresses that 
can be up to 52 bits in size. (Specific implementations of the architecture can support smaller virtual-
address and physical-address sizes.) 

In compatibility mode, legacy 16-bit and 32-bit applications run using legacy x86 protected-mode 
segmentation semantics. The 16-bit or 32-bit effective addresses generated by programs are combined 
with their segments to produce 32-bit virtual (linear) addresses that are zero-extended to a maximum 
of 64 bits. The paging that follows is the same long-mode paging function used in 64-bit mode. It 
translates the virtual addresses into physical addresses. The combination of segment selector and 
effective address is also called a logical address or far pointer. The virtual address is also called the 
linear address. 

513-184.eps

051

64-Bit Mode

63 0

Paging

051

Compatibility Mode

Segmentation

Paging

031015

Physical Address

Virtual (Linear) Address

Physical Address

Effective AddressSelector

0313263

Virtual Address0

(AMD 2017)
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Byte order

14 Memory Model

AMD64 Technology 24592—Rev. 3.22—December 2017

address. The linear address is zero-extended to a 32-bit physical address that can access up to 1MB 
of memory space. 

2.2 Memory Addressing

2.2.1  Byte Ordering

Instructions and data are stored in memory in little-endian byte order. Little-endian ordering places the 
least-significant byte of the instruction or data item at the lowest memory address and the most-
significant byte at the highest memory address. 

Figure 2-5 shows a generalization of little-endian memory and register images of a quadword data 
type. The least-significant byte is at the lowest address in memory and at the right-most byte location 
of the register image. 

Figure 2-5. Byte Ordering

Figure 2-6 on page 15 shows the memory image of a 10-byte instruction. Instructions are byte data 
types. They are read from memory one byte at a time, starting with the least-significant byte (lowest 
address). For example, the following instruction specifies the 64-bit instruction MOV RAX, 
1122334455667788 instruction that consists of the following ten bytes:

48 B8 8877665544332211

513-116.eps

Quadword in Memory

Quadword in General-Purpose Register

00hbyte 0

01hbyte 1

02hbyte 2

03hbyte 3

04hbyte 4

05hbyte 5

06hbyte 6

07hbyte 7

063

byte 0byte 1byte 2byte 3byte 4byte 5byte 6byte 7

High (most-significant) Low (least-significant)

High (most-significant)

Low (least-significant)
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address. The linear address is zero-extended to a 32-bit physical address that can access up to 1MB 
of memory space. 

2.2 Memory Addressing

2.2.1  Byte Ordering

Instructions and data are stored in memory in little-endian byte order. Little-endian ordering places the 
least-significant byte of the instruction or data item at the lowest memory address and the most-
significant byte at the highest memory address. 

Figure 2-5 shows a generalization of little-endian memory and register images of a quadword data 
type. The least-significant byte is at the lowest address in memory and at the right-most byte location 
of the register image. 

Figure 2-5. Byte Ordering

Figure 2-6 on page 15 shows the memory image of a 10-byte instruction. Instructions are byte data 
types. They are read from memory one byte at a time, starting with the least-significant byte (lowest 
address). For example, the following instruction specifies the 64-bit instruction MOV RAX, 
1122334455667788 instruction that consists of the following ten bytes:

48 B8 8877665544332211

513-116.eps

Quadword in Memory

Quadword in General-Purpose Register

00hbyte 0

01hbyte 1

02hbyte 2

03hbyte 3

04hbyte 4

05hbyte 5

06hbyte 6

07hbyte 7

063

byte 0byte 1byte 2byte 3byte 4byte 5byte 6byte 7

High (most-significant) Low (least-significant)

High (most-significant)

Low (least-significant)

(AMD 2017)
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Instructions in memory

Example of 10-Byte Instruction in Memory

Memory Model 15

24592—Rev. 3.22—December 2017 AMD64 Technology

48 is a REX instruction prefix that specifies a 64-bit operand size, B8 is the opcode that—together 
with the REX prefix—specifies the 64-bit RAX destination register, and 8877665544332211 is the 8-
byte immediate value to be moved, where 88 represents the eighth (least-significant) byte and 11 
represents the first (most-significant) byte. In memory, the REX prefix byte (48) would be stored at the 
lowest address, and the first immediate byte (11) would be stored at the highest instruction address.

Figure 2-6. Example of 10-Byte Instruction in Memory

2.2.2  64-Bit Canonical Addresses

Long mode defines 64 bits of virtual address, but implementations of the AMD64 architecture may 
support fewer bits of virtual address. Although implementations might not use all 64 bits of the virtual 
address, they check bits 63 through the most-significant implemented bit to see if those bits are all 
zeros or all ones. An address that complies with this property is said to be in canonical address form. If 
a virtual-memory reference is not in canonical form, the implementation causes a general-protection 
exception or stack fault. 

2.2.3  Effective Addresses

Programs provide effective addresses to the hardware prior to segmentation and paging translations. 
Long-mode effective addresses are a maximum of 64 bits wide, as shown in Figure 2-3 on page 12. 
Programs running in compatibility mode generate (by default) 32-bit effective addresses, which the 
hardware zero-extends to 64 bits. Legacy-mode effective addresses, with no address-size override, are 
32 or 16 bits wide, as shown in Figure 2-4 on page 13. These sizes can be overridden with an address-
size instruction prefix, as described in “Instruction Prefixes” on page 76. 

513-186.eps

00h

01h

02h

03h

04h

05h

06h

07h

08h22

09h11 High (most-significant)

Low (least-significant)48
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(AMD 2017)
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Complex address calculation (protected mode)

16 Memory Model

AMD64 Technology 24592—Rev. 3.22—December 2017

There are five methods for generating effective addresses, depending on the specific instruction 
encoding: 

• Absolute Addresses—These addresses are given as displacements (or offsets) from the base 
address of a data segment. They point directly to a memory location in the data segment. 

• Instruction-Relative Addresses—These addresses are given as displacements (or offsets) from the 
current instruction pointer (IP), also called the program counter (PC). They are generated by 
control-transfer instructions. A displacement in the instruction encoding, or one read from 
memory, serves as an offset from the address that follows the transfer. See “RIP-Relative 
Addressing” on page 18 for details about RIP-relative addressing in 64-bit mode. 

• Indexed Register-Indirect Addresses—These addresses are calculated off a base address contained 
in a general-purpose register specified by the instruction (base). Different encodings allow offsets 
from this base using a signed displacement or using the sum of the displacement and a scaled index 
value. Instruction encodings may utilize up to ten bytes—the ModRM byte, the optional SIB 
(scale, index, base) byte and a variable length displacement—to specify the values to be used in the 
effective address calculation. The base and index values are contained in general-purpose registers 
specified by the SIB byte. The scale and displacement values are specified directly in the 
instruction encoding. Figure 2-7 shows the components of the address calculation. The resultant 
effective address is added to the data-segment base address to form a linear address, as described in 
“Segmented Virtual Memory” in Volume 2. “Instruction Formats” in Volume 3 gives further 
details on specifying this form of address.

 

Figure 2-7. Complex Address Calculation (Protected Mode)

• Stack Addresses—PUSH, POP, CALL, RET, IRET, and INT instructions implicitly use the stack 
pointer, which contains the address of the procedure stack. See “Stack Operation” on page 19 for 
details about the size of the stack pointer. 

• String Addresses—String instructions generate sequential addresses using the rDI and rSI registers, 
as described in “Implicit Uses of GPRs” on page 30. 

+

513-108.eps

*

Effective Address
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Base

(AMD 2017)
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Near and far pointers
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2.2.5.2  Effect of Address-Size Prefix on RIP-Relative Addressing

RIP-relative addressing is enabled by 64-bit mode, not by a 64-bit address-size. Conversely, use of the 
address-size prefix does not disable RIP-relative addressing. The effect of the address-size prefix is to 
truncate and zero-extend the computed effective address to 32 bits, like any other addressing mode.

2.2.5.3  Encoding

For details on instruction encoding of RIP-relative addressing, see in “Encoding for RIP-Relative 
Addressing” in Volume 3. 

2.3 Pointers

Pointers are variables that contain addresses rather than data. They are used by instructions to 
reference memory. Instructions access data using near and far pointers. Stack pointers locate the 
current stack. 

2.3.1  Near and Far Pointers

Near pointers contain only an effective address, which is used as an offset into the current segment. Far 
pointers contain both an effective address and a segment selector that specifies one of several 
segments. Figure 2-8 illustrates the two types of pointers. 
 

Figure 2-8. Near and Far Pointers

In 64-bit mode, the AMD64 architecture supports only the flat-memory model in which there is only 
one data segment, so the effective address is used as the virtual (linear) address and far pointers are not 
needed. In compatibility mode and legacy protected mode, the AMD64 architecture supports multiple 
memory segments, so effective addresses can be combined with segment selectors to form far pointers, 
and the terms logical address (segment selector and effective address) and far pointer are synonyms. 
Near pointers can also be used in compatibility mode and legacy mode. 

2.4 Stack Operation

A stack is a portion of a stack segment in memory that is used to link procedures. Software 
conventions typically define stacks using a stack frame, which consists of two registers—a stack-

513-109.eps

Far PointerNear Pointer

Effective Address (EA) Effective Address (EA)Selector
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Figure 3-6. General-Purpose Data Types

3.2.2.1  Signed and Unsigned Integers

The architecture supports signed and unsigned 1-byte, 2-byte, 4- byte, 8-byte, and 16-byte integers. 
The sign bit (S) occupies the most significant bit (datum bit position length-1). Signed integers are 
represented in two’s complement format. S = 0 represents positive numbers and S = 1 negative 
numbers.

The table below presents the representable range of values for each integer data type and the BCD data 
types discussed in the following section:
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Figure 3-6. General-Purpose Data Types

3.2.2.1  Signed and Unsigned Integers

The architecture supports signed and unsigned 1-byte, 2-byte, 4- byte, 8-byte, and 16-byte integers. 
The sign bit (S) occupies the most significant bit (datum bit position length-1). Signed integers are 
represented in two’s complement format. S = 0 represents positive numbers and S = 1 negative 
numbers.

The table below presents the representable range of values for each integer data type and the BCD data 
types discussed in the following section:
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Take-home message

The x86 processor architecture stayed compatible (on the
binary code level!) with the original 8086/8088 for more
than 40 years (!)
Aligned memory access is as a rule faster for all CPU
architectures and required for some of them
The x86_64 architecture features flat memory model, 16
64-bit general purpose registers, 16 vector registers and 8
floating point registers
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