RISC architectures

Saulius Grazulis

Vilnius, 2020

Vilnius University, Faculty of Mathematics and Informatics
Institute of Informatics

UNIVg, o UNIVERg,
© &, o 7,

=) M .

s % 2

c 12} 2 s

% & %, g

2, & & o, l
Sirpg N * tvpopars™
This set of slides may be copied and used as specified in the @

BY SA

Attribution-ShareAlike 4.0 International license

Saulius Grazulis

Vilnius, 2020 1/24

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

x86

Advantages:
@ Compatibility over 40 years

e Fastest possible simultaneous execution of all code, both
old an new

@ Fastest systems

Saulius Grazulis RISC architectures Vilnius, 2020 2/24

x86

Drawbacks:
@ Large, complicated chips
@ Large transistor count - large power dissipation
@ Some obsolete features present just for compatibility
@ Some functions are duplicated
@ A lot of features not used in any given application — ballast

@ A lot of specialised with special behaviour instructions —
difficulties for compiler writers

“AMD’s 80x86 architect, Mike Johnson, famously quipped, “The
x86 really isn’t all that complex—it just doesn’t make a lot of
sense”

(Waterman 2016)

Saulius Grazulis RISC architectures Vilnius, 2020 2/24

The case for RISC

@ “Semiconductor memories are both fast and relatively
inexpensive” (Patterson et al. 2003)
@ “it is difficult to have "rational” implementations” (ibid.)

e IBM 370: Peuto and Shustek have discovered that a
sequence of load instructions is faster than a load multiple
instruction for fewer than 4 registers; this covers 40% of
cases in typical programs (Patterson et al. 2003; Peuto et al.
1977)

e Patterson found that for VAX 11/780 replacing complex
INDEX instruction (calculates address of an array element,
checks bounds) by several simple instructions (COMPARE,
JUMP LESS UNSIGNED, ADD, MUL) can calculate the same
function 45% faster (in special cases, 60% faster!) (Patterson
et al. 2003)

Saulius Grazulis RISC architectures Vilnius, 2020 3/24

The case for RISC

@ “measurements of a particular IBM 360 compiler found that
10 instructions accounted for 80% of all instructions
executed, 16 for 90%, 21 for 95%, and 30 for 99%”"!
(Patterson et al. 2003; Alexander et al. 1975).

@ “pushing a register on the stack with PUSHL RO is slower

than pushing it with the move instruction MOVL RO,-(SP)
on the VAX 11/78” (Patterson et al. 2003)

IBM 360 had 8 bit opcodes, so would have no more than 256 different
instructions — with various operands (“IBM System/360 Principles of
Operation”, p. 14)

Saulius Grazulis RISC architectures Vilnius, 2020 3/24

http://bitsavers.org/pdf/ibm/360/princOps/A22-6821-0_360PrincOps.pdf
http://bitsavers.org/pdf/ibm/360/princOps/A22-6821-0_360PrincOps.pdf

RISC

Technical features:

RISC

CISC

Instructions Simple: Load/Store
regs, operations only
in regs

Instr. formats Fixed length, two main
types: load/store &
R :=R opR

Registers 16-32 general purpose

Complex tasks for mul-
tiple data types, both in
regs and in memory

Variable length, may
types: load/store,

R :=R op R,

R := R op Mem,

R := Mem op Mem
Specialised or 8-16
general purpose

Adapted from: (Jamil 1995)

Saulius Grazulis RISC architectures

Vilnius, 2020 4/24

RISC

Design decisions:

RISC

CISC

Design objective

Implementation

Caching

Compiler design

Philosophy

Trade off program
length, minimise time
to execute instruction
Hard-wired

Essential (at least for
code)

Find best instruction
ordering & register
allocation

Move all (complicated)
functions to software

Minimise program
length, maximise
work/instruction
Microprogrammed

Useful (= nowadays,
essential)

Find best/right
instructions

Move any useful
software function into
hardware

Adapted from: (Jamil 1995)

Saulius Grazulis

RISC architectures

Vilnius, 2020

4/24

Some RISC machines

Past...

Saulius Grazulis RISC architectures Vilnius, 2020 5/24

Some RISC machines

And possibly future...

Saulius Grazulis RISC architectures Vilnius, 2020 5/24

4 RISC

@ Open-standard RISC ISA :)
@ Is provided under open source licenses
@ Does not require royalty fees to use

@ A number of companies are offering or have announced
RISC-V hardware

@ open source operating systems and tool-chains (compilers,
assemblers) with RISC-V support are available

Saulius Grazulis RISC architectures Vilnius, 2020 6/24

RISC-V variants

@ 3 address widths:

e RV32

o RV64

e RV128
@ Multiple extensions:

o I - base integer ISA
M - hardware multiply and divide
A — atomic synchronisation support
F - single precision floating point
D - double precision floating point

RV32G = RV32IMAFD

Saulius Grazulis RISC architectures Vilnius, 2020

RISC-V variants

@ 3 address widths:
e RV32
o RV64
e RV128
@ More exotic extensions
o S — Supervisor mode is implemented
e Q — Quad-precision (128 bit) floating point is supported
o C - Compressed (i.e., 16 bit) instructions are supported
o E - Embedded microprocessors, with only 16 registers

RV32G = RV32IMAFD

Saulius Grazulis RISC architectures Vilnius, 2020

RISC-V variants

@ 3 address widths:

e RV32

o RV64

e RV128
@ Future extensions:

o L — Decimal arithmetic instructions
V - Vector arithmetic instructions
P - Packed SIMD instructions
B - Bit manipulation instructions
T - Transactional memory support

RV32G = RV32IMAFD

Saulius Grazulis RISC architectures Vilnius, 2020

Main memory

@ 32-bit, 64-bit or 128-bit (virtual) address widths
@ Little-endian

@ Supports unaligned access

@ Virtual memory: paging

@ I/0O: memory mapped

Saulius Grazulis RISC architectures Vilnius, 2020 8/24

RISC-V registers

@ 32 general purpose registers

o if floating point is supported, there will be additional 32
floating point registers

@ “it would be possible to define a non-standard subset
integer RISC-V ISA with 16 registers” (Waterman et al. 2014)

@ Register widths either 32, 64 or 128 bits

Saulius Grazulis RISC architectures Vilnius, 2020 9/24

RISC-V register set

31 0 31 0
x0/zero x16
x1 x17
x2 x18
x3 x19
x4 x20
x5 x21
x6 x22
x7 x23
x8 x24
x9 x25
x10 x26
x11 x27
x12 x28
x13 x29
x14 x30
x15 x31
32 32
31 0
pc
32

RV32I Programmer-visible register set (Waterman 2016)

Saulius Gr: RISC architectures Vilnius, 2020

Instructions

@ all basic instructions are 32 bit wide

@ must be stored at word-aligned memory locations

@ ... but 16 bit compressed extensions relax alignment to 16
bits

@ Instructions for the RV64 and RV 128 variants are also 32
bits long

@ RISC-V is a “three address” architecture. E.g.:
add x4,x5,x7 # x4 = xb + X7

@ 16-bit instructions are optionally supported to compress
code (the “C” extension), but they are synonyms of the
standard 32-bit instructions

(Porter 2018)

Saulius Grazulis RISC architectures Vilnius, 2020 11/24

Instruction formats

31 25 24 20 19 15 14 12 11 76 0
\ funct? | 12 [sl Jfunct3][rd | opcode |R-type
\ imm[11:0] | rs1 [fmct3] rd [opcode |I-type
[imm[1:5] [rs2 [rsl [funct3 [imm[40] [opcode | S-type
\ imm [31:12] | rd [opcode | U-type

(Waterman et al. 2014)

Saulius Grazulis RISC architectures Vilnius, 2020 12 /24

Instruction types

@ R-type instructions:
add x3,x5,x6 # x3 = xb + x6

Saulius Grazulis RISC architectures Vilnius, 2020 13/24

Instruction types

@ R-type instructions:
add x3,x5,x6 # x3 = xb + x6

@ I-type instructions:
addi x4,x6,123 # x4 = x6+123
1w x4,8(x6) # x4 = Mem[8+x6]

Saulius Grazulis RISC architectures Vilnius, 2020 13/24

Instruction types

@ R-type instructions:
add x3,x5,x6 # x3 = xb + x6

@ I-type instructions:
addi x4,x6,123 # x4 = x6+123
1w x4,8(x6) # x4 = Mem[8+x6]
@ S-type instructions:
sw x4,8(x6) # Mem[8+r6] = x4 (word)

Saulius Grazulis RISC architectures Vilnius, 2020

Instruction types

@ R-type instructions:
add x3,x5,x6 # x3 = xb + x6
@ I-type instructions:
addi x4,x6,123 # x4 = x6+123
1w x4,8(x6) # x4 = Mem[8+x6]
@ S-type instructions:
sw x4,8(x6) # Mem[8+r6] = x4 (word)

@ B-type instructions (a variant of S-type):
blt x4,x6,loop # if x4<x6, goto offset + pc

Saulius Grazulis RISC architectures Vilnius, 2020 13/24

Instruction types

@ R-type instructions:
add x3,x5,x6 # x3 = xb + x6

@ I-type instructions:
addi x4,x6,123 # x4 = x6+123
1w x4,8(x6) # x4 = Mem[8+x6]
@ S-type instructions:
sw x4,8(x6) # Mem[8+r6] = x4 (word)
@ B-type instructions (a variant of S-type):
blt x4,x6,loop # if x4<x6, goto offset + pc

@ U-type instructions:
lui x4,0x12AB7 # x4 = value<<12
auipc x4,0x12AB7 # x4 = (value<<12) + pc

Saulius Grazulis RISC architectures Vilnius, 2020 13/24

Instruction types

@ R-type instructions:
add x3,x5,x6 # x3 = xb + x6
@ I-type instructions:
addi x4,x6,123 # x4 = x6+123
1w x4,8(x6) # x4 = Mem[8+x6]
@ S-type instructions:
sw x4,8(x6) # Mem[8+r6] = x4 (word)
@ B-type instructions (a variant of S-type):
blt x4,x6,loop # if x4<x6, goto offset + pc
@ U-type instructions:
lui x4,0x12AB7 # x4 = value<<12
auipc x4,0x12AB7 # x4 = (value<<12) + pc
e J-type instructions (a variant of U-type):
jal # call: pc = offset + pc; x4 = ret add

Saulius Grazulis RISC architectures Vilnius, 2020

Addressing modes

Just 2 addressing modes!

e immediate (operand in the instruction)

@ register indirect + offset
Immediate values:
addi x5,x0,21

lui x6,x0,0x1234
addi x6,x0,0x5678 # x6 = 0x12345678

Saulius Grazulis RISC architectures Vilnius, 2020

Memory access instructions

Instruction Format Meaning

1b rd, imm[11:0] (rsl1) Load byte, signed

1bu rd, imm[11:0] (rs1) Load byte, unsigned

1h rd, imm[11:0] (rsi1) Load half-word, signed
lhu rd, imm[11:0] (rs1) Load half-word, unsigned

1w rd, imm[11:0] (rs1) Load word
sb rs2, imm[11:0] (rsl) Store byte
sh rs2, imm[11:0] (rs1) Store half-word
sw rs2, imm[11:0] (rs1) Store word

Memory ordering fence
Instruction memory ordering fence

fence pred, succ
fence.i

— = U2 0N U2 e b b e

(Waterman 2016)

Saulius Grazulis RISC architectures Vilnius, 2020 15/24

Register x0

Register x0 always contains 0 (and writes to it are ignored).
Interregister MOV instruction not necessary!

add x6,x7,x0
is used instead of

mov x6,x7

Saulius Grazulis RISC architectures Vilnius, 2020 16 /24

Register x1

Register x1 is used to store return address during subroutine
calls, by convention (any other register could do!).

The return is then just jr x1 (Jump using Register)

For recursive calls x1 needs to be saved!

Saulius Grazulis RISC architectures Vilnius, 2020 17 /24

MUL implementation

Lower part bits of multiplication are the same for signed and
unsigned multiplication = only one MUL instruction is needed:

mul x4,x9,x13 # x4 = x9*%x13

Saulius Grazulis RISC architectures Vilnius, 2020 18/24

MUL implementation

Lower part bits of multiplication are the same for signed and
unsigned multiplication = only one MUL instruction is needed:

mul x4,x9,x13 # x4 = x9*%x13

However the higher portion can be different for signed and
unsigned operands, thus 3 instructions produce high bits:

MULH - signed operands
MULHU - unsigned operands
MULHSU - one signed operand and one unsigned operand

Saulius Grazulis RISC architectures Vilnius, 2020

MUL implementation

Lower part bits of multiplication are the same for signed and
unsigned multiplication = only one MUL instruction is needed:

mul x4,x9,x13 # x4 = x9*%x13

However the higher portion can be different for signed and
unsigned operands, thus 3 instructions produce high bits:

MULH - signed operands
MULHU - unsigned operands
MULHSU - one signed operand and one unsigned operand

Operations should be performed in this order and can then be
(optionally) fused by hardware:

mulh x4,x9,x13 # compute upper half
mul x5,x9,x13 # compute lower half
The product is now in the register pair x4:x5

Saulius Grazulis RISC architectures Vilnius, 2020 18/24

JMP implementation

Instruction for JMP is always jump-and-link: jal or jalr.

But, if you do not need the return address, use x0 as a link
register :)
jal x0, loop

Saulius Grazulis RISC architectures Vilnius, 2020 19/24

Stack. x2

@ A function that requires stack storage will grow the stack
(always by a multiple of 16) by subtracting from the stack
top pointer sp.

@ Variables within the stack frame can be addressed using
positive offsets from register x2.

Saulius Grazulis RISC architectures Vilnius, 2020 20/24

@ The RISC-V calling convention is to place the global

variables together and initialise a register to point to this
area.

@ By convention, register x3 is used for this.

@ The individual variables can be conveniently addressed by
using a small offset from the global pointer.

e The global pointer is typically initialised early in the
program and never changed. So, in some sense, it is
“callee-saved”

Saulius Grazulis

RISC architectures Vilnius, 2020 21/24

Other registers

@ Register x4 — The Thread Base Pointer (“tp”)

@ Register x8,x9,x18-x27 — Saved Registers (“s0-s11”) (Callee
saved)

@ Register x5-x7,x28-x31 — Temporary Registers (“t0-t6”)
(Caller saved)

@ Register x10-x17 - Argument Registers (*a0-a7”) 2

2Floating point arguments are passed in the floating point, fn registers if
they exist.

Saulius Grazulis RISC architectures Vilnius, 2020 22 /24

Example: multiple precision add

1i t0,0x12345678
1i t1,0xFFEDCBA9
1i t2,0x1F

1i t3,0x%44

add t5,t1,t0

sltu t4,t5,t0 # Determine the carry bit.

add t6,t2,t3

add t6,t6,t4 # Add the carry bit

t6 now contains the double-machine-word (64 bit) sum.
Exit to the caller:

1i a0
1i a7
ecall

,0
,93

ebreak

Saulius

RISC architectures

Example: multiple precision add

1i t0,0x12345678

1i t1,0xFFEDCBA9

1i t2,0x1F

1i t3,0x44

add tb,t1,t0

add t6,t2,t3

bgeu t5,t0,nocarry # Determine the carry bit.
addi t6,t6,1 # Add the carry bit

nocarry:

t6 now contains the double-machine-word (64 bit) sum.
Exit to the caller:

1i a0,0

1li a7,93

ecall

ebreak

Saulius zulis RISC architectures ilnius, 2020 23/24

References

‘ Alexander, W. C. et al. (1975). “Static and Dynamic characteristics of XPL programs”. In: Computer 8.11,
pp. 41-46. DOI: 10.1109/c-m. 1975.218804.

Jamil, T. (1995). “RISC versus CISC”. In: IEEE Potentials 14.3, pp. 13-16. DOI: 10.1109/45.464688.

Patterson, David A. et al. (2003). The case for the reduced instruction set computer. Tech. rep. Computer
Science Division, University of California; Bell Laboratories, Science Research Center, pp. 25-33.
URL: https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.68.9623.

‘ Peuto, B. L. et al. (1977). “An instruction timing model of CPU performance”. In: Fourth Annual
Symposium on Computer Architecture, pp. 165-178. DOI: 10.1145/800255.810667.

‘ Porter I1I, Harry H. (2018). RISC-V: an overview of the instruction set architecture. URL:
https://web.cecs.pdx.edu/~harry/riscv/RISCV-Summary.pdf.

‘ Waterman, Andrew (Jan. 2016). “Design of the RISC-V instruction set architecture”. PhD thesis. Electrical
Engineering and Computer Sciences, University of California at Berkeley, pp. 1-117. URL:
http://wwu2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-1.html.

‘ Waterman, Andrew et al. (2014). The RISC-V instruction set manual, volume I: user-level ISA, version 2.0.
Tech. rep. UCB/EECS-2014-54. Electrical Engineering and Computer Sciences, University of
California at Berkeley, pp. 1-102. URL:
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54 . pdf.

Saulius Grazuli > architec ilnius, 2020 24 /24

https://doi.org/10.1109/c-m.1975.218804
https://doi.org/10.1109/45.464688
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.68.9623
https://doi.org/10.1145/800255.810667
https://web.cecs.pdx.edu/~harry/riscv/RISCV-Summary.pdf
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-1.html
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.pdf

	References

