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ENIAC
ENIAC – had to be rewired...

U.S. Army Photo, Public Domain
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Harvardo/fon Noimano kompiuteriai

SSEM „Manchester Baby“ – first (?) stored program vacuum
tube computer...

By Parrot of Doom, CC BY-SA 3.0, via Wikimedia Commons
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Von Neumann architecture bottleneck

155 OCR Output

among several independent processors to work on the problem simultaneously. Some problems
problem on a computer to come up with a new approach which will be able to be efficiently divided
Algorithmic parallelism involves rethinking the fundamental algorithms being used to solve a
turn·around time for a single problem or task, and may actually negatively impact throughput.
tasks/processes to be completed per unit time. Algorithmic parallelism attempts to improve the
Task/process parallelism is able to improve the throughput of a computer system by allowing more

Algorithmic Parallelism

misses.

to be effective, the cache subsystems must be capable of supporting multiple, outstanding cache
the latency of the cache miss, thus improving the efficiency of CPU utilization. For these approaches
such as a cache miss. This would allow useful processing to be performed in other contexts during
a single cycle). Context switches would be initiated when a long running operation is encountered
within a single processor with a very lightweight mechanism for switching contexts (on the order of
cycle by cycle basis. In a similar fashion, much research is being done on sharing multiple contexts

performance gap. Source: [10].
1985 and 100% per year thereafter. Note that the vertical axis must be on a logarithmic scale to record the size ofthe processor-DRAM
year until 1985 and a 50% improvement thereafter. The fast processor line assumes a 26% performance improvement between 1980 and
DRAM baseline is 64 KB in 1980, with three years to the next generation. The slow processor line assumes a 19% improvement per
Figure 4: . Using their 1980 performance as a baseline, the performance of DFlAMs and processors is plotted over time. The

19ao 19a1 19a2 19a; 19a4 1985 19as 19ar 19as 19a9 1990 1991 1992
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1 ,000%
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(Groves 1995)
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Von Neumann architecture bottleneck

In its simplest form a von Neumann computer has three
parts: a central processing unit (or CPU), a store, and a
connecting tube that can transmit a single word between
the CPU and the store (and send an address to the store).
I propose to call this tube the von Neumann bottleneck.

John Backus, 1977 ACM Turing Award Lecture (Backus 1978)
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UMA

UMA: Uniform Memory Access (Groves 1995)
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UMA
NUMA: Non-Uniform Memory Access (Groves 1995)

Saulius Gražulis Netradicinės ir ateities architektūros Vilnius, 2024 6 / 31



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

UMA
NUMA: Non-Uniform Memory Access (Groves 1995)

Saulius Gražulis Netradicinės ir ateities architektūros Vilnius, 2024 6 / 31



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

NORMA
NORMA: No Remote Memory Access (Groves 1995)
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Programming parallel machines

For NORMA/MUMA/UMA:
MPI: Message Passing Interface (https://www.open-mpi.org/)
For NUMA/UMA:
OpenMP: Open Multi-Processing API (https://www.openmp.org/)

OpenMP example:

#include <stdio.h>
#define N 100000000LL
int main(int argc, char *argv[]) {

static long long a[N];
long long i;

#pragma omp parallel for
for (i = 0; i < N; i++)

a[i] = 2 * i;

printf( "%lld\n", a[N-1LL] );
return 0;

}

cc \
-fopenmp \
-Wall \
-O3 \
-fomit-frame-pointer \
-funroll-loops \
-o loop \

loop.c
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https://www.open-mpi.org/
https://www.openmp.org/


.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Grafiniai procesoriai (GPU)

Input Registers

Output Registers

Constants

Temp Registers

Textures

Shader

Program

Figure 1: Programming model for current programmable
graphics hardware. A shader program operates on a single
input element (vertex or fragment) stored in the input regis-
ters and writes the execution result into the output registers.

functions applied to each element of a stream. A streaming
processor executes a kernel over all elements of an input
stream, placing the results into an output stream. Dally
et al. [2003] explain how stream programming encourages
the creation of applications with high arithmetic intensity,
the ratio of arithmetic operations to memory bandwidth.
This paper defines a similar property called computational
intensity to compare CPU and GPU performance.

Stream architectures are a topic of great interest in com-
puter architecture [Bove and Watlington 1995; Gokhale and
Gomersall 1997]. For example, the Imagine stream processor
[Kapasi et al. 2002] demonstrated the effectiveness of stream-
ing for a wide range of media applications, including graph-
ics and imaging [Owens et al. 2000]. The StreamC/KernelC
programming environment provides an abstraction which al-
lows programmers to map applications to the Imagine pro-
cessor [Mattson 2002]. Labonte et al. [2004] studied the ef-
fectiveness of GPUs as stream processors by evaluating the
performance of a streaming virtual machine mapped onto
graphics hardware. The programming model presented in
this paper could easily be compiled to their virtual machine.

2.2 Programming Graphics Hardware

Modern programmable graphics accelerators such as the
ATI X800XT and the NVIDIA GeForce 6800 [ATI 2004b;
NVIDIA 2004] feature programmable vertex and frag-
ment processors. Each processor executes a user-specified
assembly-level shader program consisting of 4-way SIMD
instructions [Lindholm et al. 2001]. These instructions in-
clude standard math operations, such as 3- or 4-component
dot products, texture-fetch instructions, and a few special-
purpose instructions.

The basic execution model of a GPU is shown in figure 1.
For every vertex or fragment to be processed, the graphics
hardware places a graphics primitive in the read-only input
registers. The shader is then executed and the results writ-
ten to the output registers. During execution, the shader
has access to a number of temporary registers as well as
constants set by the host application.

Purcell et al. [2002] describe how the GPU can be con-
sidered a streaming processor that executes kernels, written
as fragment or vertex shaders, on streams of data stored in

geometry and textures. Kernels can be written using a va-
riety of high-level, C-like languages such as Cg, HLSL, and
GLslang. However, even with these languages, applications
must still execute explicit graphics API calls to organize data
into streams and invoke kernels. For example, stream man-
agement is performed by the programmer, requiring data
to be manually packed into textures and transferred to and
from the hardware. Kernel invocation requires the loading
and binding of shader programs and the rendering of ge-
ometry. As a result, computation is not expressed as a set
of kernels acting upon streams, but rather as a sequence of
shading operations on graphics primitives. Even for those
proficient in graphics programming, expressing algorithms
in this way can be an arduous task.

These languages also fail to virtualize constraints of the
underlying hardware. For example, stream elements are
limited to natively-supported float, float2, float3, and
float4 types, rather than allowing more complex user-
defined structures. In addition, programmers must always
be aware of hardware limitations such as shader instruction
count, number of shader outputs, and texture sizes. There
has been some work in shading languages to alleviate some of
these constraints. Chan et al. [2002] present an algorithm to
subdivide large shaders automatically into smaller shaders
to circumvent shader length and input constraints, but do
not explore multiple shader outputs. McCool et al. [2002;
2004] have developed Sh, a system that allows shaders to be
defined and executed using a metaprogramming language
built on top of C++. Sh is intended primarily as a shading
system, though it has been shown to perform other types of
computation. However, it does not provide some of the basic
operations common in general purpose computing, such as
gathers and reductions.

In general, code written today to perform computation
on GPUs is developed in a highly graphics-centric environ-
ment, posing difficulties for those attempting to map other
applications onto graphics hardware.

3 Brook Stream Programming Model

Brook was a developed as a language for streaming proces-
sors such as Stanford’s Merrimac streaming supercomputer
[Dally et al. 2003], the Imagine processor [Kapasi et al. 2002],
the UT Austin TRIPS processor [Sankaralingam et al. 2003],
and the MIT Raw processor [Taylor et al. 2002]. We have
adapted Brook to the capabilities of graphics hardware, and
will only discuss Brook in the context of GPU architectures
in this paper. The design goals of the language include:

• Data Parallelism and Arithmetic Intensity

By providing native support for streams, Brook allows
programmers to express the data parallelism that exists
in their applications. Arithmetic intensity is improved
by performing computations in kernels.

• Portability and Performance

In addition to GPUs, the Brook language maps to a
variety of streaming architectures. Therefore the lan-
guage is free of any explicit graphics constructs. We
have created Brook implementations for both NVIDIA
and ATI hardware, using both DirectX and OpenGL,
as well as a CPU reference implementation. Despite the
need to maintain portability, Brook programs execute
efficiently on the underlying hardware.

778
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finer pieces that can be solved cooperatively in parallel. 
The programming model scales transparently to large 
numbers of processor cores: a compiled CUDA program 
executes on any number of processors, and only the run-
time system needs to know the physical processor count.  

THE CUDA PARADIGM
CUDA is a minimal extension of the C and C++ program-
ming languages. The programmer writes a serial program 
that calls parallel kernels, which may be simple functions 

or full programs. A kernel executes in parallel across a 
set of parallel threads. The programmer organizes these 
threads into a hierarchy of grids of thread blocks. A thread 
block is a set of concurrent threads that can cooperate 
among themselves through barrier synchronization and 
shared access to a memory space private to the block. A 
grid is a set of thread blocks that may each be executed 
independently and thus may execute in parallel.

When invoking a kernel, the programmer specifies the 
number of threads per block and the number of blocks 

NVIDIA Tesla GPU with 112 Streaming Processor Cores 
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memory

host CPU

host interface
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FIG A 

Continued on the next page

SIMT (single-instruction, multiple-thread).3 The SM maps 
each thread to one SP scalar core, and each scalar thread 
executes independently with its own instruction address and 
register state. The SM SIMT unit creates, manages, sched-

ules, and executes threads in groups of 32 parallel threads 
called warps. (This term originates from weaving, the first 
parallel thread technology.) Individual threads composing a 

(Buck et al. 2004; Nickolls et al. 2008)
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Grafinių procesorių programavimas
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so-called saxpy kernel defined by the BLAS (basic linear 
algebra subprograms) library. The code for performing 
this computation on both a serial processor and in paral-
lel using CUDA is shown in figure 1.

The __global__ declaration specifier indicates that the 
procedure is a kernel entry point. CUDA programs launch 
parallel kernels with the extended function-call syntax

kernel<<<dimGrid, dimBlock>>>(... parameter list ...);

where dimGrid and dimBlock are three-element vectors 
of type dim3 that specify the dimensions of the grid 
in blocks and the dimensions of the blocks in threads, 
respectively. Unspecified dimensions default to 1.

In the example, we launch a grid that assigns one 
thread to each element of the vectors and puts 256 
threads in each block. Each thread computes an element 
index from its thread and block IDs and then performs 
the desired calculation on the corresponding vector 
elements. The serial and parallel versions of this code 
are strikingly similar. This represents a fairly common pat-

tern. The serial code consists of a loop where each itera-
tion is independent of all the others. Such loops can be 
mechanically transformed into parallel kernels: each loop 
iteration becomes an independent thread. By assigning a 
single thread to each output element, we avoid the need 
for any synchronization among threads when writing 
results to memory.

The text of a CUDA kernel is simply a C function for 
one sequential thread. Thus, it is generally straightfor-
ward to write and is typically simpler than writing paral-
lel code for vector operations. Parallelism is determined 
clearly and explicitly by specifying the dimensions of a 
grid and its thread blocks when launching a kernel.

Parallel execution and thread management are auto-
matic. All thread creation, scheduling, and termination 
are handled for the programmer by the underlying sys-
tem. Indeed, a Tesla-architecture GPU performs all thread 
management directly in hardware. The threads of a block 
execute concurrently and may synchronize at a barrier by 
calling the __syncthreads() intrinsic. This guarantees that 
no thread participating in the barrier can proceed until all 
participating threads have reached the barrier. After pass-
ing the barrier, these threads are also guaranteed to see 
all writes to memory performed by participating threads 
before the barrier. Thus, threads in a block may commu-
nicate with each other by writing and reading per-block 
shared memory at a synchronization barrier.

Since threads in a block may share local memory and 
synchronize via barriers, they will reside on the same 
physical processor or multiprocessor. The number of 
thread blocks can, however, greatly exceed the number of 
processors. This virtualizes the processing elements and 
gives the programmer the flexibility to parallelize at what-
ever granularity is most convenient. This allows intuitive 
problem decompositions, as the number of blocks can 
be dictated by the size of the data being processed rather 
than by the number of processors in the system. This also 
allows the same CUDA program to scale to widely varying 
numbers of processor cores.

To manage this processing element virtualization and 
provide scalability, CUDA requires that thread blocks exe-
cute independently. It must be possible to execute blocks 
in any order, in parallel or in series. Different blocks have 
no means of direct communication, although they may 
coordinate their activities using atomic memory operations 
on the global memory visible to all threads—by atomi-
cally incrementing queue pointers, for example.

This independence requirement allows thread blocks 
to be scheduled in any order across any number of cores, 
making the CUDA model scalable across an arbitrary 

Computing y ← ax + y with a Serial Loop
void saxpy_serial(int n, float alpha, float *x, float *y)
{
    for(int i = 0; i<n; ++i)
        y[i] = alpha*x[i] + y[i];
}

// Invoke serial SAXPY kernel
saxpy_serial(n, 2.0, x, y);

Computing y ← ax + y in parallel using CUDA
__global__
void saxpy_parallel(int n, float alpha, float *x, float *y)
{
    int i = blockIdx.x*blockDim.x + threadIdx.x;

    if( i<n )  y[i] = alpha*x[i] + y[i];
}

// Invoke parallel SAXPY kernel (256 threads per block)
int nblocks = (n + 255) / 256;
saxpy_parallel<<<nblocks, 256>>>(n, 2.0, x, y);

FIG 1 
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so-called saxpy kernel defined by the BLAS (basic linear 
algebra subprograms) library. The code for performing 
this computation on both a serial processor and in paral-
lel using CUDA is shown in figure 1.

The __global__ declaration specifier indicates that the 
procedure is a kernel entry point. CUDA programs launch 
parallel kernels with the extended function-call syntax

kernel<<<dimGrid, dimBlock>>>(... parameter list ...);

where dimGrid and dimBlock are three-element vectors 
of type dim3 that specify the dimensions of the grid 
in blocks and the dimensions of the blocks in threads, 
respectively. Unspecified dimensions default to 1.

In the example, we launch a grid that assigns one 
thread to each element of the vectors and puts 256 
threads in each block. Each thread computes an element 
index from its thread and block IDs and then performs 
the desired calculation on the corresponding vector 
elements. The serial and parallel versions of this code 
are strikingly similar. This represents a fairly common pat-

tern. The serial code consists of a loop where each itera-
tion is independent of all the others. Such loops can be 
mechanically transformed into parallel kernels: each loop 
iteration becomes an independent thread. By assigning a 
single thread to each output element, we avoid the need 
for any synchronization among threads when writing 
results to memory.

The text of a CUDA kernel is simply a C function for 
one sequential thread. Thus, it is generally straightfor-
ward to write and is typically simpler than writing paral-
lel code for vector operations. Parallelism is determined 
clearly and explicitly by specifying the dimensions of a 
grid and its thread blocks when launching a kernel.

Parallel execution and thread management are auto-
matic. All thread creation, scheduling, and termination 
are handled for the programmer by the underlying sys-
tem. Indeed, a Tesla-architecture GPU performs all thread 
management directly in hardware. The threads of a block 
execute concurrently and may synchronize at a barrier by 
calling the __syncthreads() intrinsic. This guarantees that 
no thread participating in the barrier can proceed until all 
participating threads have reached the barrier. After pass-
ing the barrier, these threads are also guaranteed to see 
all writes to memory performed by participating threads 
before the barrier. Thus, threads in a block may commu-
nicate with each other by writing and reading per-block 
shared memory at a synchronization barrier.

Since threads in a block may share local memory and 
synchronize via barriers, they will reside on the same 
physical processor or multiprocessor. The number of 
thread blocks can, however, greatly exceed the number of 
processors. This virtualizes the processing elements and 
gives the programmer the flexibility to parallelize at what-
ever granularity is most convenient. This allows intuitive 
problem decompositions, as the number of blocks can 
be dictated by the size of the data being processed rather 
than by the number of processors in the system. This also 
allows the same CUDA program to scale to widely varying 
numbers of processor cores.

To manage this processing element virtualization and 
provide scalability, CUDA requires that thread blocks exe-
cute independently. It must be possible to execute blocks 
in any order, in parallel or in series. Different blocks have 
no means of direct communication, although they may 
coordinate their activities using atomic memory operations 
on the global memory visible to all threads—by atomi-
cally incrementing queue pointers, for example.

This independence requirement allows thread blocks 
to be scheduled in any order across any number of cores, 
making the CUDA model scalable across an arbitrary 

Computing y ← ax + y with a Serial Loop
void saxpy_serial(int n, float alpha, float *x, float *y)
{
    for(int i = 0; i<n; ++i)
        y[i] = alpha*x[i] + y[i];
}

// Invoke serial SAXPY kernel
saxpy_serial(n, 2.0, x, y);

Computing y ← ax + y in parallel using CUDA
__global__
void saxpy_parallel(int n, float alpha, float *x, float *y)
{
    int i = blockIdx.x*blockDim.x + threadIdx.x;

    if( i<n )  y[i] = alpha*x[i] + y[i];
}

// Invoke parallel SAXPY kernel (256 threads per block)
int nblocks = (n + 255) / 256;
saxpy_parallel<<<nblocks, 256>>>(n, 2.0, x, y);

FIG 1 (Nickolls et al. 2008)
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Brain wiring

http://www.flycircuit.tw (Chiang et al. 2011)
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Neuron models

McCulloch–Pitts neuron (McCulloch et al. 1943; Alom et al. 2018):

f(x1, x2, . . . , xn) = φ

(
b +

n∑
i=1

wixi

)
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Neural Networks
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Neurons as logic gates

(Minsky 1967)
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Perceptron

Frank Rosenblatt’s Perceptron
(Rosenblatt 1957):

Deep learning ANNs
(Alom et al. 2018):
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12 

        

 
Fig. 15. Basic building block of VGG network: Convolution 

(Conv) and FC for fully connected layers 

 

  All versions of the VGG-E models ended the same with three 

fully connected layers. However, the number of convolution 

layers varied VGG-11 contained 8 convolution layers, VGG-16 

had 13convolution layers, and VGG-19 had 16convolution 

layers. VGG-19, the most computational expensive model, 

contained 138Mweights and had 15.5G MACs.  

 

6) GoogLeNet (2014)  

GoogLeNet, the winner of ILSVRC 2014[10], was a model 

proposed by Christian Szegedy of Google with the objective of 

reducing computation complexity compared to the traditional 

CNN. The proposed method was to incorporate “Inception 

Layers” that had variable receptive fields, which were created 

by different kernel sizes. These receptive fields created 

operations that captured sparse correlation patterns in the new 

feature map stack.  

  

 
Fig. 16. Inception layer: naive version 

 

 The initial concept of the Inception layer can be seen in Fig. 

16. GoogLeNet improved the state of the art recognition 

accuracy using a stack of Inception layers seen in Fig. 17. The 

difference between the naïve inception layer and final Inception 

Layer was the addition of 1x1 convolution kernels. These 

kernels allowed for dimensionality reduction before 

computationally expensive layers. GoogLeNet consisted of 22 

layers in total, which was far greater than any network before 

it. However, the number of network parameters GoogLeNet 

used was much lower than its predecessor AlexNet or VGG. 

GoogLeNet had 7M network parameters when AlexNet had 

60M and VGG-19 138M.  The computations for GoogLeNet 

also were 1.53G MACs far lower than that of AlexNet or VGG.

 
Fig. 17. Inception layer with dimension reduction  

 

7)  Residual Network (ResNet in 2015)  

  The winner of ILSVRC 2015 was the Residual Network 

architecture, ResNet[11]. Resnet was developed by Kaiming He 

with the intent of designing ultra-deep networks that did not 

suffer from the vanishing gradient problem that predecessors 

had. ResNet is developed with many different numbers of 

layers; 34, 50,101, 152, and even 1202. The popular ResNet50 

contained 49 convolution layers and 1 fully connected layer at 

the end of the network. The total number of weights and MACs 

for the whole network are 25.5M and 3.9G respectively.   

 
Fig. 18. Basic diagram of Residual block 

 

The basic block diagram of ResNet architecture is shown in 

Fig. 18. ResNet is a traditional feed forward network with a 

residual connection.  The output of a residual layer can be 

defined based on the outputs of  (𝑙 − 1)𝑡ℎ which comes from 

the previous layer defined as  𝑥𝑙−1 . ℱ( 𝑥𝑙−1) is the output after 

performing various operations (e.g. convolution with different 

size of filters, Batch Normalization (BN) followed by an 

activation function such as a ReLU on 𝑥𝑙−1). The final output 

of residual unit is 𝑥𝑙   which can be defined with the following 

equation: 

                     𝑥𝑙 = ℱ( 𝑥𝑙−1) + 𝑥𝑙−1                                     (21) 

The residual network consists with several basic residual 

blocks. However, the operations in the residual block can be 

varied depending on the different architecture of residual 

networks [11]. The wider version of residual network was 

proposed by Zagoruvko el at. In 2016 [66]. Another improved 

residual network approach known as aggregated residual 

transformation was proposed in 2016[67]. Recently, some other 

Single layer Multilayer
Single layer can not do XOR: (Minsky and Papert 1969)
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Adapted from (Brown et al. 2000)
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March 2017 Data Sheet DS1040

© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand 
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Architecture Overview
The iCE40 family architecture contains an array of Programmable Logic Blocks (PLB), sysCLOCK™ PLLs, Non-
volatile Programmable Configuration Memory (NVCM) and blocks of sysMEM™ Embedded Block RAM (EBR) sur-
rounded by Programmable I/O (PIO). Figure 2-1 shows the block diagram of the iCE40LP/HX1K device.

Figure 2-1. iCE40LP/HX1K Device, Top View

The logic blocks, Programmable Logic Blocks (PLB) and sysMEM EBR blocks, are arranged in a two-dimensional 
grid with rows and columns. Each column has either logic blocks or EBR blocks. The PIO cells are located at the 
periphery of the device, arranged in banks. The PLB contains the building blocks for logic, arithmetic, and register 
functions. The PIOs utilize a flexible I/O buffer referred to as a sysIO buffer that supports operation with a variety of 
interface standards. The blocks are connected with many vertical and horizontal routing channel resources. The 
place and route software tool automatically allocates these routing resources.

In the iCE40 family, there are up to four independent sysIO banks. Note on some packages VCCIO banks are tied 
together. There are different types of I/O buffers on the different banks. Refer to the details in later sections of this 
document. The sysMEM EBRs are large 4 kbit, dedicated fast memory blocks. These blocks can be configured as 
RAM, ROM or FIFO. 

The iCE40 architecture also provides up to two sysCLOCK Phase Locked Loop (PLL) blocks. The PLLs have mul-
tiply, divide, and phase shifting capabilities that are used to manage the frequency and phase relationships of the 
clocks.

Every device in the family has a SPI port that supports programming and configuration of the device. The iCE40 
includes on-chip, Nonvolatile Configuration Memory (NVCM).
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Architecture
iCE40 LP/HX Family Data Sheet

PLB Blocks
The core of the iCE40 device consists of Programmable Logic Blocks (PLB) which can be programmed to perform 
logic and arithmetic functions. Each PLB consists of eight interconnected Logic Cells (LC) as shown in Figure 2-2. 
Each LC contains one LUT and one register. 

Figure 2-2. PLB Block Diagram

Logic Cells
Each Logic Cell includes three primary logic elements shown in Figure 2-2.

• A four-input Look-Up Table (LUT4) builds any combinational logic function, of any complexity, requiring up to 
four inputs. Similarly, the LUT4 element behaves as a 16x1 Read-Only Memory (ROM). Combine and cas-
cade multiple LUT4s to create wider logic functions.

• A ‘D’-style Flip-Flop (DFF), with an optional clock-enable and reset control input, builds sequential logic func-
tions. Each DFF also connects to a global reset signal that is automatically asserted immediately following 
device configuration.

• Carry Logic boosts the logic efficiency and performance of arithmetic functions, including adders, subtractors, 
comparators, binary counters and some wide, cascaded logic functions.

Table 2-1. Logic Cell Signal Descriptions

Function Type Signal Names Description

Input Data signal I0, I1, I2, I3 Inputs to LUT4

Input Control signal Enable Clock enable shared by all LCs in the PLB

Input Control signal Set/Reset1 Asynchronous or synchronous local set/reset shared by all LCs in 
the PLB. 

Input Control signal Clock Clock one of the eight Global Buffers, or from the general-purpose 
interconnects fabric shared by all LCs in the PLB

Input Inter-PLB signal FCIN Fast carry in

Output Data signals O LUT4 or registered output

Output Inter-PFU signal FCOUT Fast carry out

1. If Set/Reset is not used, then the flip-flop is never set/reset, except when cleared immediately after configuration.

= Statically defined by configuration program

LUT4

Carry Logic

Logic Cell

SR

EN

D Q

DFF

Flip-flop with 
optional enable and 
set or reset controls

Four-input
Look-Up Table
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Architecture
iCE40 LP/HX Family Data Sheet

RAM Initialization and ROM Operation
If desired, the contents of the RAM can be pre-loaded during device configuration.

By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block 
can also be utilized as a ROM. 

Note the sysMEM Embedded Block RAM Memory address 0 cannot be initialized.

Memory Cascading
Larger and deeper blocks of RAM can be created using multiple EBR sysMEM Blocks. 

RAM4k Block
Figure 2-4 shows the 256x16 memory configurations and their input/output names. In all the sysMEM RAM modes, 
the input data and addresses for the ports are registered at the input of the memory array.

Figure 2-4. sysMEM Memory Primitives

Table 2-5. EBR Signal Descriptions

For further information on the sysMEM EBR block, please refer to TN1250, Memory Usage Guide for iCE40 De-
vices.

Signal Name Direction Description

WDATA[15:0] Input Write Data input.

MASK[15:0] Input Masks write operations for individual data bit-lines.
0 = write bit; 1 = don’t write bit

WADDR[7:0] Input Write Address input. Selects one of 256 possible RAM locations.

WE Input Write Enable input.

WCLKE Input Write Clock Enable input.

WCLK Input Write Clock input. Default rising-edge, but with falling-edge option.

RDATA[15:0] Output Read Data output.

RADDR[7:0] Input Read Address input. Selects one of 256 possible RAM locations.

RE Input Read Enable input.

RCLKE Input Read Clock Enable input.

RCLK Input Read Clock input. Default rising-edge, but with falling-edge option.

WCLK

WE RE

WCLKE RCLKE

RCLK

WDATA[15:0] RDATA[15:0]

MASK[15:0]

WADDR[7:0] RADDR[7:0]

Write Port Read Port

RAM4K 
RAM Block

(256x16)

(Lattice Semiconductor 2017)
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FPGA ANN

This reference design implements Convolutional Neural
Network (CNN) based human face identification on Lat-
tice’s low power ECP5 FPGA using an image sensor.

Lattice Semiconductor Reference Designs

Features:
VGG8 like – 8x (Convolution, Batch Normalisation) + 4x
Pooling + 1 fully connected CNN
Runs at 2 frames per second with 90 x 90 RGB Input
Total ECP5 power consumption of 850mW

Saulius Gražulis Netradicinės ir ateities architektūros Vilnius, 2024 18 / 31
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CPU in FPGA

CPUs can be implemented in FPGA:

    DM
      readIMPC+

A

     DM
       write

D

+

im

1

Figure 1: Two stage pipeline of Leros

Many small processors are available, which target FPGAs. We
pick two examples and point out the differences to our Leros
design. PicoBlaze is an 8-bit microcontroller optimized (and
restricted) for Xilinx FPGAs [10]. This optimization results in
restrictions such as maximal program size of 1024 instructions and
64 byte data memory. Compared to PicoBlaze, Leros has fewer
restrictions on program and data size, as it is a 16-bit processor.

The SpartanMC is a small microcontroller optimized for FPGA
technology [3]. The processor is a 16 register RISC architecture
with two operand instructions and is implemented in a three-stage
pipeline. Compared to the SpartanMC, Leros is further optimized
for FPGAs using fewer resources. Leros simplifies the access to
registers in on-chip memory by implementing an accumulator ar-
chitecture instead of a register architecture.

3. THE LEROS PROCESSOR
The Leros processor [7] is a microcontroller optimized for low-

cost field-programmable gate arrays (FPGAs). It is a 16-bit pro-
cessor intended for utility functions in an FPGA based System-on-
Chip (SoC) design. The design goals of Leros are a good balance
between the number of logic cells and on-chip memories, reason-
able performance, and a high maximum clock frequency.

The architecture, which follows from the design goals, is a
pipelined 16-bit accumulator processor with additional directly
addressable registers in an on-chip memory for local variables.
Only a single dedicated register (the accumulator) is connected to
the ALU output and provides one input to the ALU. To provide
fast data locations, similar to a register file, the first 256 words in
the on-chip data memory can be directly addressed for an ALU
operation. The on-chip data memory is shared for those registers
and general data. With an additional on-chip memory for the
instructions only two memory blocks3 are needed, and the pipeline
can execute one instruction per clock cycle.

The basic building blocks in current FPGAs are logic cells (LC),
on-chip memories, and DSP blocks. For a utility processor we are
interested in the optimal relation between logic cell and on-chip
memory consumption. On-chip memory in FPGAs is organized as
fixed-sized blocks with a configurable data and address width. To
optimize a tiny processor core we evaluated the relation of on-chip
memories to logic resources on current low-cost FPGAs.

3Very small programs can even be implemented using logic for the
instruction memory.

We have compared recent low-cost FPGA families from Altera
and Xilinx [7]. For medium size and large FPGAs of the Altera
Cyclone and Xilinx Spartan-6 series the relation between LCs and
memory blocks stays in the range of 200 to 400 LCs per memory
block independent of the device size. Therefore we conclude that
the sweet spot for a Leros in current FPGAs is around 300 LCs per
on-chip memory block.

Leros is named after the Greek island Leros,4 where it was de-
signed during an enjoyable vacation. Leros is available under open-
source from https://github.com/schoeberl/leros.

3.1 The Pipeline
Leros is implemented in a two-stage pipeline with following vis-

ible architectural state: the program counter (PC), the accumulator
register (A), the instruction memory (IM), and the data memory
(DM). Figure 1 shows the pipeline of Leros (slightly simplified).
The DM is shown twice as it is read in one pipeline stage and writ-
ten in a different one. Register A is the accumulator and PC the
program counter.

In the first pipeline stage, instructions are fetched from the on-
chip IM and decoded. Decoding the few instructions is simple,
so an additional decode stage is not needed. In the second stage,
operands are read from the DM and the ALU operation is per-
formed. The result is placed in the accumulator. Similar to the
first stage, the 16-bit ALU operation is fast enough to perform it in
the same stage as reading from DM.

The read and write address of the DM is either a constant from
the instruction (for the on-chip registers) or an indirection via the
DM plus an offset (for loads and stores). The write data for the
DM is either A for store instructions or the PC for a jump-and-link
instruction that saves the PC in a register.

As the data memory is shared for registers and general data, load
and stores are implemented by two instructions. With the first in-
struction the address for the register is sent to the DM. The follow-
ing instruction uses the value of the DM (the register content) and
adds an offset, which is part of that instruction, to form the effective
address. The data word to be written is provided by A; the result of
a load is stored into A.

For on-chip memories with independent read and write ports the
question arises what happens on a concurrent write to and read from
the same address in the same cycle. There are three options: (1)
read the newly written value, (2) read the old value, or (3) unde-
fined. For option (2) and (3) a read following a write to the same

4http://www.lerosisland.com/

(Caska et al. 2011; Schoeberl 2011)
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Hardware description languages

Verilog (https://en.wikipedia.org/wiki/Verilog)
VHDL (https://en.wikipedia.org/wiki/VHDL)
Chissel (https://www.chisel-lang.org/)

Project stages/system capabilities
1 Describe
2 Simulate
3 Verify
4 Synthesise (for FPGA or Silicon foundry)
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Verilog example

module rng (
input clk,
output LED1,
output LED2,
output LED3,
output LED4,
output LED5
);

localparam BITS = 5;
localparam LOG2DELAY = 22;
reg [BITS+LOG2DELAY -1:0] counter = 0;
reg ready = 0;
reg [31:0] rng;
always@(posedge clk)

counter <= counter + 1;
always@(posedge counter[LOG2DELAY -2])

if( ready )
begin

rng <= ({rng[0],(rng >> 1)})^(rng | {(rng << 1),rng[31]});
end

else
begin

rng = 32'h00010000;
ready = 1;

end
assign {LED1, LED2, LED3, LED4, LED5} = rng[11:7];

endmodule

https://github.com/RGD2/icestorm_example
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Verilog example

module rng (
input clk,
output LED1,
output LED2,
output LED3,
output LED4,
output LED5
);

localparam BITS = 5;
localparam LOG2DELAY = 22;
reg [BITS+LOG2DELAY -1:0] counter = 0;
reg ready = 0;
reg [31:0] rng;
always@(posedge clk)

counter <= counter + 1;
always@(posedge counter[LOG2DELAY -2])

if( ready )
begin

rng <= ({rng[0],(rng >> 1)})^(rng | {(rng << 1),rng[31]});
end

else
begin

rng = 32'h00010000;
ready = 1;

end
assign {LED1, LED2, LED3, LED4, LED5} = rng[11:7];

endmodule

saulius@tasmanijos -velnias verilog/ $ make -n upload
yosys -p "read_verilog rng.v; synth_ice40 -blif rng.blif"
arachne-pnr -d 1k -p rng.pcf -o rng.txt rng.blif
icepack rng.txt rng.bin
iceprog rng.bin

https://github.com/RGD2/icestorm_example
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Verilog example

module rng (
input clk,
output LED1,
output LED2,
output LED3,
output LED4,
output LED5
);

localparam BITS = 5;
localparam LOG2DELAY = 22;
reg [BITS+LOG2DELAY -1:0] counter = 0;
reg ready = 0;
reg [31:0] rng;
always@(posedge clk)

counter <= counter + 1;
always@(posedge counter[LOG2DELAY -2])

if( ready )
begin

rng <= ({rng[0],(rng >> 1)})^(rng | {(rng << 1),rng[31]});
end

else
begin

rng = 32'h00010000;
ready = 1;

end
assign {LED1, LED2, LED3, LED4, LED5} = rng[11:7];

endmodule

saulius@tasmanijos -velnias verilog/ $ make simulate
iverilog simulate.v
./a.out
Begin Simulation
At time 0, LEDS = x x x x x
At time 2097151, LEDS = 0 0 0 0 0
At time 23068671, LEDS = 1 0 0 0 0
At time 27262975, LEDS = 0 1 0 0 0
At time 31457279, LEDS = 1 1 1 0 0
At time 35651583, LEDS = 0 0 0 1 0
^C** VVP Stop(0) **
** Flushing output streams.
** Current simulation time is 39064597 ticks.
> finish

https://github.com/RGD2/icestorm_example
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Open Cores
https://opencores.org/
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FPGA for bioinformatics

Hall, A. Short-Read DNA Sequence Alignment with Custom
Designed FPGA-based Hardware (Hall 2010);
FPGA based molecular dynamics: (Khan et al. 2012; Yang
et al. 2019; Waidyasooriya et al. 2016).
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Cell Matrix

INTRODUCTION

There are also more subtle output states:
• a half-intensity green LED means a cell's D-output is unstable (e.g.,

inverter feeding itself), and is alternately outputting 1s and 0s;
• a half-intensity red LED means a neighboring cell's C output is

unstable, and is alternately outputting 1s and 0s; and
• an orange LED means the cell's mode is unstable, and it is alternating

between D-mode with asserted D outputs, and C-mode.

With experience, this simple output mechanism can be extremely useful
for understanding what is happening inside the matrix. For example,
signal transmission tends to look like a line of green LEDs; cell
configuration at the end of a line of cells looks like a line of green LEDs,
followed by a red LED; and so on.

6

https://cellmatrix.com/entryway/entryway/branchAbout.html

https://www.cellmatrix.com
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Cell Matrix

INTRODUCTION

NOTE: It may be difficult to see the LEDs in bright indoor light, or
direct sunlight. If it is difficult to see, try lowering the ambient light
level, or shielding the array from direct light.

Each of the LEDs corresponds to one cell within the matrix. An LED can
be in one of three states:
• LED is red – the cell is in C-mode, i.e., its truth table is being

modified;
• LED is green – the cell is in D-mode, and at least one of its D-outputs

is non-zero
• LED is dark – the cell is in D-mode, and all of its D outputs are zero.

5

https://cellmatrix.com/entryway/entryway/branchAbout.html

https://www.cellmatrix.com
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Sistoliniai procesoriai

to some of the techniques used in constructing large soft-
ware systems, are essential.1I In addition, special-purpose
systems based on simple, regular designs are likely to be
modular and therefore adjustable to various performance
goals-that is, system cost can be made proportional to
the performance required. This suggests that meeting the
architectural challenge for simple, regular designs yields
cost-effective special-purpose systems.

Concurrency and communication. There are essential-
ly two ways to build a fast computer system. One is to use
fast components, and the other is to use concurrency. The
last decade has seen an order of magnitude decrease in the
cost and size of computer components but only an incre-
mental increase in component speed.'2 With current
technology, tens of thousands of gates can be put in a
single chip, but no gate is much faster than its TTL
counterpart of 10 years ago. Since the technological trend
clearly indicates a diminishing growth rate for component
speed, any major improvement in computation speed
must come from the concurrent use of many processing
elements. The degree of concurrency in a special-purpose
system is largely determined by the underlying algorithm.
Massive parallelism can be achieved if the algorithm is
designed to introduce high degrees of pipelining and
multiprocessing. When a large number of processing
elements work simultaneously, coordination and com-
munication become significant-especially with VLSI
technology where routing costs dominate the power,
time, and area required to implement a computation.13
The issue here is to design algorithms that support high
degrees of concurrency, and in the meantime to employ
only simple, regular communication and control to enable
efficient implementation.

Balancing computation with I/O. Since a special-
purpose system typically receives data and outputs results
through an attached host, I/O considerations influence
overall performance. (The host in this context can mean a
computer, a memory, a real-time device, etc. In practice,
the special-purpose system may actually input from one
"physical" host and output to another.) The ultimate

Figure 1. Basic principle of a systolic system.

performance goal of a special-purpose system is-and
should be no more than-a computation rate that bal-
ances the available I/O bandwidth with the host. Since an
accurate a priori estimate of available I/O bandwidth in a
complex system is usually impossible, the design of a
special-purpose system should be modular so that its
structure can be easily adjusted to match a variety of I/O
bandwidths.
Suppose that the I/O bandwidth between the host and a

special-purpose system is 10 million bytes per second, a
rather high bandwidth for present technology. Assuming
that at least two bytes are read from or written to the host
for each operation, the maximum rate will be only 5
million operations per second, no matter how fast the
special-purpose system can operate (see Figure 1). Orders
of magnitude improvements on this throughput are possi-
ble only if multiple computations are performed per I/O
access. However, the repetitive use of a data item requires
it to be stored inside the system for a sufficient length of
time. Thus, the I/O problem is related not only to the
available I/O bandwidth, but also to the available
memory internal to the system. The question then is how
to arrange a computation together with an appropriate
memory structure so that computation time is balanced
with I/O time.
The I/O problem becomes especially severe when a large

computation is performed on a small special-purpose sys-
tem. In this case, the computation must be decomposed.
Executing subcomputations one at a time may require a
substantial amount of I/O to store or retrieve intermediate
results. Consider, for example, performing the n-point fast
Fourier transform using an S-point device when n is large
and S is small. Figure 2 depicts the n-point FFT computa-
tion and a decomposition scheme for n = 16 and S = 4. Note
that each subcomputation block is sufficiently small so that
it can be handled by the 4-point device. During execution,
results of a block must be temporarily sent to the host and
later retrieved to be combined with results of other blocks
as they become available. With the decomposition scheme
shown in Figure 2b, the total number of I/O operations is
O(n log n/log S). In fact, it has been shown that, to per-
form the n-point FFT with a device of O(S) memory, at
least this many I/O operations are needed for any decom-
position scheme. 14 Thus, for the n-point FFT problem, an
S-point device cannot achieve more than an O(log S)
speed-up ratio over the conventional O(n log n) software
implementation time, and since it is a consequence of the
I/O consideration, this upper bound holds independently
of device speed. Similar upper bounds have been estab-
lished for speed-up ratios achievable by devices for other
computations such as sorting and matrix multiplication. 14,15
Knowing the I/O-imposed performance limit helps pre-
vent overkill in the design of a special-purpose device.

In practice, problems are typically "larger" than
special-purpose devices. Therefore, questions such as
how a computation can be decomposed to minimize I/O,
how the I/O requirement is related to the size of a special-
purpose system and its memory, and how the I/O band-
width limits the speed-up ratio achievable by a special-
purpose system present another set of challenges to the
system architect.

COMPUTER38

A RECONFIGURABLE DATA-FLOW ARCHITECTURE FOR A CLASS OF IMAGE P R O C E S S B  
APPLICATIONS 

A.Sinha, Member ZEEE, S.Neogi and KMaiti 
R & D Center, Himachal Futuristic Communication Ltd., 

286, Udyog Vihar, Gurgaon -122016, INDIA 
amitabha-sinha@ieee.org 

Abstract ---This paper aims to device an 
architecture which uses capability of asynchronous 
concurrency of the data flow architecture as well as 
spatial parallelism of SIMD machines for a class of 
image processing applications using reconfigurable 
processing elements (RPEs). Overall processing 
speed is enhanced by a) concurrent functioning of 
the RPEs and b) replacing software execution of 
signal processing functions by hardware approach 
using FPGAs as RPEs. Thus, a hybrid architecture, 
which functions as a data flow machine at a 
functional level and exploits the capability of 
handling spatial paraIleIism by incorporating a 
modified SIMD concepts is presented. 

Zndex terms ---Control Unit (Cv), Signal Processing 
Instructions (SPIs), Processing Elements (PES), Bit 
stream memory module (BSMM), Interconnection 
Network (ICN). 

1. INTRODUCTION 
Intensive and complex computations are 

required for image processing algorithms on enormous 
amount of data. The real time processing requirement 
of this huge amount data will be far below the 
processing speed of the fastest available uni-processor 
system. It is observed that a large class of image 
processing algorithms exhibit spatial parallelism and is 
most suitable for SIMD machines. Imaging 
Architecture based on SIMD concept has been reported 
in [1][2][3] and a re-configurable SIMD architecture 
has been reported in [4]. SIMD machines employ a 
large number of tiny PES working concurrently under 
the control of a CU. For a given algorithm, the CU will 
have to broadcast the simple machine instructions in 
lock-step fashion corresponding to a complex imaging 
instruction to all the PES. In this process CU efficiency 
goes down to a large extent. Apart from that, the 
efficiency of these machines is limited by 1) Capability 
of the PES, 2) Data communication between the PES, 
3) Capability of handling tree-structured algorithms. 

High-speed requirements of digital image 
processing algorithms can be achieved by exploiting 
the spatial parallelism inherent in the algorithms and 
using a no of dedicated hardware to execute the 
specific functions. However incorporating all the 
functions in a single processing element will lead to 
complex, inefficient and costly solution. This problem 
can be handled by introducing dynamically 

reconfigurable [5] [6]  parallel architecture where PES 
can be reconfigured on the fly depending on the Signal 
Processing Instructions (SPIs) issued to by the CU. 

Data flow architectures [14][151 offers a possible 
way of exploiting concurrency of computations on a 
large scale. Highly concurrent computation in Data- 
flow concept is achieved by data-driven approach. In 
this model instruction firing is asynchronous [7][8][9]. 
These properties are especially suitable for Image 
Processing computations [lo][ 1 11. 

For a given imaging application, SIMD technique 
alone cannot handle the whole algorithm because an 
algorithm can be viewed as a collection of functional 
units working asynchronously and concurrently. 
However, each functional unit exhibits SIMD kind of 
spatial parallelism. Hence, in order to achieve 
substantial throughput gain, the approach should be to 
devise a technique such that there should be two fold 
concurrency: asynchronous concurrency at the top 
level and spatial parallelism within the functional 
units. Keeping this in view, this paper present a new 
hybrid architecture, which uses modified SIMD 
concepts as the processing units of the Data-flow 
machine at a functional level. 

2. PROPOSED ARCHITECTURE 
Since the proposed architecture (fig. 1) i s  meant 

for handling image-processing algorithms, it should be 
capable of handling both scalar and vector instructions 
efficiently. 

Fct& lmlt 

- 
FIgmr 1: A" d the Hybrid DF-SIMD Machine 

Scalar instructions are simple arithmetic (ADD, 
SUB), logical operators (AND, OR, etc.), relational 
(GREATER-THAN, LESS-THAN, etc.), decision 
making (SELECT, MERGE) etc.. Vector instructions 
include the imaging functions like FFI', SMOOTH, 

460 
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(Kung 1982; Sinha et al. 2002)

Saulius Gražulis Netradicinės ir ateities architektūros Vilnius, 2024 25 / 31



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Duomenų perdavimu paremtos architektūros

II. TRANSPORT TRIGGERED ARCHITECTURE

The bypass complexity of VLIW can be reduced by
making the bypass registers visible at architectural level.
This way the spilling of bypass values into register file
(RF) is made under the program control. The bypass com-
plexity can also be reduced by reducing the number of read
and write connections and, therefore, the number of by-
pass buses. This implies that, besides the operations, also
the operand transfers (transports) need to be scheduled at
compile-time. Thus, the bypass transports become visible
at the architectural level and operations can be hidden. In
this model, the data transports trigger the operations im-
plicitly. In principle, the traditional operation triggered
programming paradigm is mirrored, hence the name trans-
port triggered architecture [7]. In the TTA programming
model, program specifies only the data transports to be
performed by the interconnection network. Therefore,
only one type of operation is supported: move operation,
which performs a data transport from a source to a destin-
ation. The number of move operations per instruction is
equal to the number of simultaneous transports supported
by the interconnection network.

A TTA processor consists of a set of functional units and
register files containing general-purpose registers. These
units are connected by an interconnection network con-
sisting of buses as illustrated in Fig. 1. Connections to
buses are established through input and output sockets; an
input socket contains multiplexers feeding operands from
the buses into the FUs and an output socket contains de-
multiplexers placing the FU results into the correct bus.
The TTA concept provides flexibility in form of modu-
larity; functional units with standard interface are used
as basic building blocks. Therefore, the architecture can
be tailored with special function units without a need to
change the transport capacity.

III. MOVE FRAMEWORK

MOVE framework is a design environment containing a
set of software tools for designing ASIPs [8]. It provides a
semi-automatic design process shortening the design-time.
MOVE framework exploits the scalability, flexibility, and
simplicity of TTA. The design flow consists of three prin-
cipal components as illustrated in Fig. 2.

The design space explorer searches for a processor con-
figuration, which yields the best cost/performance ratio
for a given application. Hardware resources of the pro-
cessor, such as the number and type of buses, FUs and
RFs and their connectivity, are described in an architec-
ture description file. The design space explorer optimizes
first the hardware resources. An architecture configura-
tion fulfilling the cost and performance requirements is
then chosen by the designer for connectivity optimization
where unnecessary connections are removed.

FU

FU

RFFU RF FU

FU LSUFU Memory

Fig. 1. Principal block diagram of TTA. FU: Function unit. RF: Register
file. LSU: Load-store unit. Dots represent socket connections.

The hardware subsystem is responsible for generating
the processor floorplan. A processor generator is first used
to generate a structural hardware description (VHDL) of
the optimized processor configuration obtained from the
design space explorer. Commercial tools can then be used
to perform logic synthesis, placement, and routing to ob-
tain the layout of the processor.

The software subsystem generates instruction-level par-
allel code for the chosen processor configuration. It con-
sist of front-end, back-end, and simulator. The front-end,
based on GNU gcc, is used to compile the HLL code into
sequential code. The back-end schedules the data trans-
ports of the sequential code to the available resources de-
scribed in the architecture configuration file and generates
the parallel code. The simulator provides also statistics,
e.g., cycle count, instruction count, and hardware resource
utilization.

IV. ASIP FOR 32-POINT DCT

The MOVE framework was used to generate an
application-specific processor for a 32-point DCT used in
an audio coding application. First, the fast algorithm for
DCT proposed in [9] was described in C language. The
created C code contains five functions, one for each pro-
cessing column of the signal flow graph of the algorithm.
Each function is written totally unrolled, i.e., no iterations
are used. This alleviates detection and exploitation of the
inherent parallelism of the algorithm. On the other hand,
such a code results in larger program code.

In DSP realizations, fractional number representation
is often used where the number range is normalized into
range [−1,1), i.e., the fixed-point representation contains
a single digit for sign followed by the binary point and
digits for fractions. In our case, 16-bit data words were
used; one bit for sign and 15 bits for magnitude. Due to
the fact that ANSI C does not contain predefined data type
for such a representation, the normalization needed in mul-
tiplications was included into the C description as a shift
of 15 bits to the left as follows

int a,b,c;
c = (a*b) >> 15;

LSU

ALU

LSU

ALU ALU

SHFTMUL

I/O

RFs
8x4 int

1x1 bool

DMEM

Fig. 3. Optimized architecture configuration for 32-point DCT.

The obtained netlist, cell library, and hard macros were
imported to a back-end tool and floorplanning tasks were
performed. The area of the processor core was estimated
based on the number of standard cells in the design and
utilization limit of the technology. Core aspect ratio was
modified together with macro placement in order to op-
timize the macro placement and the shape of standard cell
area. After these, I/O placement and automatized power
routing estimation were executed.

Flat approach was used for placement and routing. Con-
nectivity based placement was used without timing con-
straints and without any additional physical constraints
such as critical net weighting, cell grouping, placement
blockages, or routing blockages. The memory blocks have
been implemented with only four metal layers, thus one
metal layer could be used for routing over the macros.
Some placement and routing iterations, including core size
modifications, were executed in order to find an optimal
routable area for standard cells. Floorplan of the design is
illustrated in Fig. 4. Macro cells forming the instruction
memory are placed on the left and right edges of the core.
Data memory is placed at the bottom and I/O on top of the
core. The size of the data memory is 512 bytes, and the
size of the instruction memory is 24576 bytes.

TABLE I

STATISTICS OF 32-POINT DCT PROCESSOR DESIGN.

Core size (width x height) [µm] 850.00 x 928.20
Chip size (width x height) [µm] 920.55 x 998.75

Clock cycles 538
Data transports 2722

Instruction width [bits] 180
Instructions 559

Code size [bytes] 12578
Code efficiency [%] 54.1

   DATA
MEMORY

I
N
S
T 
R 
U 
C 
T 
I 
O 
N 
  
M 
E 
M 
O 
R 
Y 

I
N
S
T 
R 
U 
C 
T 
I 
O 
N 
  
M 
E 
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O 
R 
Y 

I/O

Fig. 4. Floorplan of ASIP designed for 32-point DCT application.

Acceptable level of routing congestion was achieved
with the core and chip dimensions described in Table I
and with standard cell utilization of 78%. Clock tree syn-
thesis was done in order to distribute the clock signal to
flip-flops with minimum skew. The design has only one
clock domain with total number of 140 clock distribution
buffers and the number of loads is 3283. Estimated max-
imum skew value is 0.047 ns after the clock tree synthesis
and 0.032 ns after pre-layout gate sizing. The maximum
clock frequency limited by switching for this clock domain
is about 700 MHz. These numbers are pre-layout estima-
tions without exact statistics from static timing analysis or
gate level simulations.

In this design case, only the first phase of the routing
tasks was performed; neither physical violation checks nor
final routing optimization were performed. However, the
first routing phase results in quite accurate estimations;
in general, for simple floorplans without special physical
constraints, the difference is about 5% compared to final
post layout results. After the back-end flow, the design was
verified at gate-level with clock frequency of 250 MHz us-
ing back-annotated timing information from the back-end
tool. Clock frequency of 250MHz was chosen in the logic
synthesis phase. The attainable clock frequency is limited
by the memory access time; 350 MHz could have been
achieved with the used technology.

C. Simulation

The MOVE software subsystem was used to compile
the DCT application into an executable binary code for

(Janssen 2001; Heikkinen et al. 2002)
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Other possibilities...

Cellular automata (e.g. J. H. Conway’s “Life”); Turing
complete!
DNA data storage
DNA computing
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