
Systolic architectures, which permit multiple computations
for each memory access, can speed execution of

compute-bound problems without increasing I/O requirements.

Why Systolic Architectures?
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f High-performance, special-purpose computer sys-
tems are typically used to meet specific application re-
quirements or to off-load computations that are especial-
ly taxing to general-purpose computers. As hardware cost
and size continue to drop and processing requirements
become well-understood in areas such as signal and image
processing, more special-purpose systems are being con-
structed. However, since most of these systems are built
on an ad hoc basis for specific tasks, methodological
work in this area is rare. Because the knowledge gaited
from individual experiences is neither accumulated nor
properly organized, the same errors are repeated. I/O and
computation imbalance is a notable example-often, the
fact that I/O interfaces cannot keep up with device speed
is discovered only after constructing a high-speed,
special-purpose device.
We intend to help correct this ad hoc approach by pro-

viding a general guideline-specifically, the concept of
systolic architecture, a general methodology for mapping
high-level computations into hardware structures. In a
systolic system, data flows from the computer memcory in
a rhythmic fashion, passing through many processing
elements before it returns to memory, much as blood cir-
culates to and from the heart. The system works like an
autombbile assembly line where different people work on
the same car at different times and many cars are assem-
bled simultaneously. An assembly line is always linear,
however, and systolic systems are sometimes two-dimen-
sional. They can be rectangular, triangular, or hexagonal
to make use of higher degrees of parallelism. Moreover,
to implement a variety of computations, data flow in a
systolic system may be at multiple speeds in multiple di-
rections-both inputs and (partial) results flow, whereas
only results flow in classical pipelined systems. Generally
speaking, a systolic system is easy to implement because
of its regularity and easy to reconfigure (to meet various
outside constraints) because of its modularity.
The systolic architectural concept was developed at

Carnegie-Mellon University,'17 and versions of systolic
processors are being designed and built by several indus-
trial and governmental organizations.840 This article

reviews the basic principle of systolic architectures and ex-
plains why they should result in cost-effective, high-
performance special-purpose systems for a wide range of
problems.

Key architectural issues in designing
special-purpose systems

Roughly, the cycle for developing a special-purpose
system can be divided into three phases-task definition,
design, and implementation. During task definition,
some system performance bottleneck is identified, and a
decision on whether or not, to resolve it with special-
purpose hardware is made. The evaluation required for
task definition is most fundamental, but since it is often
application-dependent, we will concentrate only on archi-
tectural issues related to the design phase and will assume
routine implementation.

Simple and regular design. Cost-effectiveness has
always been a chief concern in designing special-purpose
systems; their cost must be low enough to justify their
limited applicability. Costs can be classified as nonrecur-
ring (design) and recurring (parts) costs. Part costs are
dropping rapidly due to advances in integrated-circuit
technology, but this advantage applies equally to both
special-purpose and general-purpose systems. Further-
more, since special-purpose systems are seldom produced
in large quantities, part costs are less important than
design costs. Hence, the design cost of a special-purpose
system must be relatively small for it to be more attractive
than a general-purpose approach.

Fortunately, special-purpose design costs can be reduced
by the use of appropriate architectures. If a structure can
truly be decomposed into a few types of simple substruc-
tures or building blocks, which are used repetitively with
simple interfaces, great savings can be achieved. This is
especially true for VLSI designs where a single chip com-
prises hundreds of thousands of components. To cope
with that complexity, simple and regular designs, similar

OJJ18-9162/82/0100-0037$00.75 c3 1982 IEEEJanuary 1982 37



to some of the techniques used in constructing large soft-
ware systems, are essential.1I In addition, special-purpose
systems based on simple, regular designs are likely to be
modular and therefore adjustable to various performance
goals-that is, system cost can be made proportional to
the performance required. This suggests that meeting the
architectural challenge for simple, regular designs yields
cost-effective special-purpose systems.

Concurrency and communication. There are essential-
ly two ways to build a fast computer system. One is to use
fast components, and the other is to use concurrency. The
last decade has seen an order of magnitude decrease in the
cost and size of computer components but only an incre-
mental increase in component speed.'2 With current
technology, tens of thousands of gates can be put in a
single chip, but no gate is much faster than its TTL
counterpart of 10 years ago. Since the technological trend
clearly indicates a diminishing growth rate for component
speed, any major improvement in computation speed
must come from the concurrent use of many processing
elements. The degree of concurrency in a special-purpose
system is largely determined by the underlying algorithm.
Massive parallelism can be achieved if the algorithm is
designed to introduce high degrees of pipelining and
multiprocessing. When a large number of processing
elements work simultaneously, coordination and com-
munication become significant-especially with VLSI
technology where routing costs dominate the power,
time, and area required to implement a computation.13
The issue here is to design algorithms that support high
degrees of concurrency, and in the meantime to employ
only simple, regular communication and control to enable
efficient implementation.

Balancing computation with I/O. Since a special-
purpose system typically receives data and outputs results
through an attached host, I/O considerations influence
overall performance. (The host in this context can mean a
computer, a memory, a real-time device, etc. In practice,
the special-purpose system may actually input from one
"physical" host and output to another.) The ultimate

Figure 1. Basic principle of a systolic system.

performance goal of a special-purpose system is-and
should be no more than-a computation rate that bal-
ances the available I/O bandwidth with the host. Since an
accurate a priori estimate of available I/O bandwidth in a
complex system is usually impossible, the design of a
special-purpose system should be modular so that its
structure can be easily adjusted to match a variety of I/O
bandwidths.
Suppose that the I/O bandwidth between the host and a

special-purpose system is 10 million bytes per second, a
rather high bandwidth for present technology. Assuming
that at least two bytes are read from or written to the host
for each operation, the maximum rate will be only 5
million operations per second, no matter how fast the
special-purpose system can operate (see Figure 1). Orders
of magnitude improvements on this throughput are possi-
ble only if multiple computations are performed per I/O
access. However, the repetitive use of a data item requires
it to be stored inside the system for a sufficient length of
time. Thus, the I/O problem is related not only to the
available I/O bandwidth, but also to the available
memory internal to the system. The question then is how
to arrange a computation together with an appropriate
memory structure so that computation time is balanced
with I/O time.
The I/O problem becomes especially severe when a large

computation is performed on a small special-purpose sys-
tem. In this case, the computation must be decomposed.
Executing subcomputations one at a time may require a
substantial amount of I/O to store or retrieve intermediate
results. Consider, for example, performing the n-point fast
Fourier transform using an S-point device when n is large
and S is small. Figure 2 depicts the n-point FFT computa-
tion and a decomposition scheme for n = 16 and S = 4. Note
that each subcomputation block is sufficiently small so that
it can be handled by the 4-point device. During execution,
results of a block must be temporarily sent to the host and
later retrieved to be combined with results of other blocks
as they become available. With the decomposition scheme
shown in Figure 2b, the total number of I/O operations is
O(n log n/log S). In fact, it has been shown that, to per-
form the n-point FFT with a device of O(S) memory, at
least this many I/O operations are needed for any decom-
position scheme. 14 Thus, for the n-point FFT problem, an
S-point device cannot achieve more than an O(log S)
speed-up ratio over the conventional O(n log n) software
implementation time, and since it is a consequence of the
I/O consideration, this upper bound holds independently
of device speed. Similar upper bounds have been estab-
lished for speed-up ratios achievable by devices for other
computations such as sorting and matrix multiplication. 14,15
Knowing the I/O-imposed performance limit helps pre-
vent overkill in the design of a special-purpose device.

In practice, problems are typically "larger" than
special-purpose devices. Therefore, questions such as
how a computation can be decomposed to minimize I/O,
how the I/O requirement is related to the size of a special-
purpose system and its memory, and how the I/O band-
width limits the speed-up ratio achievable by a special-
purpose system present another set of challenges to the
system architect.
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Systolic architectures: the basic principle

As a solution to the above challenges, we introduce
systolic architectures, an architectural concept originally
proposed for VLSI implementation of some matrix oper-
ations.5 Examples of systolic architectures follow in the
next section, which contains a walk-through of a family
of designs for the convolution computation.
A systolic system consists of a set of interconnected

cells, each capable of performing some simple operation.
Because simple, regular communication and control
structures have substantial advantages over complicated
ones in design and implementation, cells in a systolic
system are typically interconnected to form a systolic ar-
ray or a systolic tree. Information in a systolic system
flows between cells in a pipelined fashion, and communi-
cation with the outside world occurs only at the "bound-
ary cells." For example, in a systolic array, only those
cells on the array boundaries may be I/O ports for the
system.

Computational tasks can be conceptually classified
into two families-compute-bound computations and
I/O-bound computations. In a computation, if the total
number of operations is larger than the total number of
input and output elements, then the computation is
compute-bound, otherwise it is I/O-bound. For example,
the ordinary matrix-matrix multiplication algorithm
represents a compute-bound task, since every entry in a
matrix is multiplied by all entries in some row or column
of the other matrix. Adding two matrices, on the other
hand, is I/O-bound, since the total number of adds is not
larger than the total number of entries in the two matrices.
It should be clear that any attempt to speed up an I/O-
bound computation must rely on an increase in memory
bandwidth. Memory bandwidth can be increased by the
use of either fast components (which could be expensive)
or interleaved memories (which could create complicated
memory management problems). Speeding up a com-
pute-bound computation, however, may often be accom-

plished in a relatively simple and inexpensive manner,
that is, by the systolic approach.
The basic principle of a systolic architecture, a systolic

array in particular, is illustrated in Figure 1. By replacing a
single processing element with an array of PEs, or cells in
the terminology of this article, a higher computation
throughput can be achieved without increasing memory
bandwidth. The function of the memory in the diagram is
analogous to that of the heart; it "pulses" data (instead of
blood) through the array of cells. The crux of this ap-
proach is to ensure that once a data item is brought out
from the memory it can be used effectively at each cell it
passes while being "pumped" from cell to cell along the
array. This is possible for a wide class of compute-bound
computations where multiple operations are performed
on each data item in a repetitive manner.

Being able to use each input data item a number of
times (and thus achieving high computation throughput
with only modest memory bandwidth) is just one of the
many advantages of the systolic approach. Other advan-
tages, such as modular expansibility, simple and regular
data and control flows, use of simple and uniform cells,
elimination of global broadcasting, and fan-in and (pos-
sibly) fast response time, will be illustrated in various sys-
tolic designs in the next section.

A family of systolic designs
for the convolution computation

To provide concrete examples of various systolic struc-
tures, this section presents a family of systolic designs for
the convolution problem, which is defined as follows:

Given the sequence of weights lwl, w2. wk '
and the input sequence Ix1 x2, * Xn,.

compute the result sequence tYl Y2 . Yn + I - k
defined by

YI=WlXi+W2Xi+l ± .. + wkXi+k

Figure 2. (a) 16*point fast-Fourier-transform graph; (b) decomposing the FFT computation with n = 16 and S = 4.
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Figure 3. Design Bi: systolic convolution array (a) and cell

(b) where xi's are broadcast, wi's stay, and yi's move
systolically.

We consider the convolution problem because it is a sim-
ple problem with a variety of enlightening systolic solu-
tions, because it is an important problem in its own right,
and more importantly, because it is representative of a

wide class of computations suited to systolic designs. The
convolution problem can be viewed as a problem of com-
bining two data streams, wi's amd xi's, in a certain man-
ner (for example, as in the above equation) to form a

resultant data stream of yi's. This type of computation is
common to a number of computation routines, such as
filtering, pattern matching, correlation, interpolation,
polynomial evaluation (including discrete Fourier trans-
forms), and polynomial multiplication and division. For
example, if multiplication and addition are interpreted as

comparison and boolean AND, respectively, then the
convolution problem becomes the pattern matching
problem. Architectural concepts for the convolution
problem can thus be applied to these other problems as

well.
The convolution problem is compute-bound, since

each input xi is to be multiplied by each of the k weights. If
the xi is input separately from memory for each multi-
plication, then when k is large, memory bandwidth
becomes a bottleneck, precluding a high-performance
solution. As indicated earlier, a systolic architecture
resolves this I/O bottleneck by making multiple use of
each xi fetched from the memory. Based on this principle,
several systolic designs for solving the convolution prob-
lem are described below. For simplicity, all illustrations
assume that k= 3.

(Semi-) systolic convolution arrays with global data
communication. If an xi, once brought out from the
memory, is broadcast to a number of cells, then the same
xi can be used by all the cells. This broadcasting technique
is probably one of the most obvious ways to make mul-
tiple use of each input element. The opposite of broad-
casting is fan-in, through which data items from a number
of cells can be collected. The fan-in technique can also be
used in a straightforward manner to resolve the I/O bot-
tleneck problem. In the following, we describe systolic
designs that utilize broadcasting and fan-in.

Design B1-broadcast inputs, move results, weights
stay. The systolic array and its cell definition are depicted

Figure 4. Design B2: systolic convolution array (a) and cell
(b) where xi's are broadcast, yi's stay, and wi's move
systolically.

in Figure 3. Weights are preloaded to the cells, one at each
cell, and stay at the cells throughout the computation.
Partial results yi move systolically from cell to cell in the
left-to-right direction, that is, each of them moves over
the cell to its right during each cycle. At the beginning
of a cycle, one xi is broadcast to all the cells and one yi, in-
itialized as zero, enters the left-most cell. During cycle
one, w, xi is accumulated to Yi at the left-most cell, and
during cycle two, wI x2 and w2 x2 are accumulated to Y2

and yi at the left-most and middle cells, respectively.
Starting from cycle three, the final (and correct) values of
YI , Y2, . are output from the right-most cell at the rate
of oneyi per cycle. The basic principle of this design was
previously proposed for circuits to implement a pattern
matching processor16 and for circuits to implement
polynomial multiplication. 17-20

Design B2-broadcast inputs, move weights, results
stay. In design B2 (see Figure 4), each yi stays at a cell to
accumulate its terms, allowing efficient use of available
multiplier-accumulator hardware. (Indeed, this design is
described in an application booklet for the TRW multi-
plier-accumulator chips.21 The weights circulate around
the array of cells, and the first weight w, is associated with
a tag bit that signals the accumulator to output and resets
its contents. * In design B 1 (Figure 3), the systolic path for
moving yi's may be considerably wider than that for mov-
ing wi's in design B2 because for numerical accuracy yi's
typically carry more bits than wi's. The use of multiplier-
accumulators in design B2 may also help increase preci-
sion of the results, since extra bits can be kept in these ac-

cumulators with modest cost. Design Bl, however, does
have the advantage of not requiring a separate bus (or
other global network), denoted by a dashed line in Figure
4, for collecting outputs from individual cells.

Design F-fan-in results, move inputs, weights stay. If
we consider the vector of weights (Wk, Wk-., w1 ) as
being fixed in space and input vector (xn, xn .. , x )
as sliding over the weights in the left-to-right direction,
then the convolution problem is one that computes the in-
ner product of the weight vector and the section of input
vector it overlaps. This view suggests the systolic array

*To avoid complicated pictures, control structures such as the use of tag
bits to gate outputs from cells are omitted from the diagrams of this article.
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Figure 5. Design F: systolic convolution array (a) and cell
(b) where wi's stay, xi's move systolically, and yj's are
formed through the fan-in of results from all the cells.

shown in Figure 5. Weights are preloaded to the cells and
stay there throughout the computation. During a cycle,
all xi's move one cell to the right, multiplications are per-

formed at all cells simultaneously, and their results are

fanned-in and summed using an adder to form a new _v,.
When the number of cells, k, is large, the adder can be im-

plemented as a pipelined adder tree to avoid large delays
in each cycle. Designs of this type using unbounded fan-in
have been known for quite a long time, for example, in the
context of signal processing33 and in the context of pat-
tern matching.43

(Pure-) systolic convolution arrays without global data
communication. Although global broadcasting or fan-in
solves the 1/0 bottleneck problem, implementing it in a

modular, expandable way presents another problem.
Providing (or collecting) a data item to (or from) all the
cells of a systolic array, during each cycle, requires the use

of a bus or some sort of tree-like network. As the number
of cells increases, wires become long for either a bus or

tree structure; expanding these non-local communication
paths to meet the increasing load is difficult without slow-
ing down the system clock. This engineering difficulty of
extending global networks is significant at chip, board,
and higher levels of a computer system. Fortunately, as

will be demonstrated below, systolic convolution arrays

without global data communication do exist. Potentially,
these arrays can be extended to include an arbitrarily large
number of cells without encountering engineering diffi-
culties (the problem of synchronizing a large systolic ar-

ray is discussed later).
Design RI-results stay, inputs and weights move in

opposite directions. In design RI (see Figure 6) each par-
tial result yi stays at a cell to accumulate its terms. The xi 's
and wi's move systolically in opposite directions such that
when an x meets a w at a cell, they are multiplied and the
resulting product is accumulated to the y staying at that
cell. To ensure that each xi is able to meet every wi, con-

secutive xi's on the x data stream are separated by two cy-
cle times and so are the wi's on the w data stream.

Like design B2, design RI can make efficient use of
available multiplier-accumulator hardware; it can also
use a tag bit associated with the first weight, wl, to trigger
the output and reset the accumulator contents of a cell.

Figure 6. Design Rl: systolic convolution array (a) and cell
(b) where yi 's stay and xi 's and yj's move in opposite direc-
tions systolically.

Figure 7. Design R2: systolic convolution array (a) and cell
(b) where yI 's stay and xi 's and wi's both move in the same
direction but at different speeds.

Design R 1 has the advantage that it does not require a bus,
or any other global network, for collecting output from
cells; a systolic output path (indicated by broken arrows

in Figure 6) is sufficient. Because consecutive wi's are well
separated by two cycle times, a potential conflict-that
more than one yi may reach a single latch on the systolic
output path simultaneously-cannot occur. It can also be
easily checked that the y,'s will output from the systolic
output path in the natural orderingyi, Y2,.... The basic
idea of this design, including that of the systolic output
path, has been used to implement a pattern matching
chip. I

Notice that in Figure 6 only about one-half the cells are
doing useful work at any time. To fully utilize the poten-
tial throughput, two independent convolution computa-
tions can be interleaved in the same systolic array, but
cells in the array would have to be modified slightly to
support the interleaved computation. For example, an

additional accumulator would be required at each cell to
hold a temporary result for the other convolution com-

putation.
Design R2 -results stay, inputs and weights move in

the same direction but at different speeds. One version of
design R2 is illustrated in Figure 7. In this case both the x
and w data streams move from left to right systolically,
but the xi's move twice as fast as the wi's. More precisely,

January 1982

X5 X 3r- 2rI_ --

lADDERl
(a)

Xin r 1 xout
LwJ Zout - w Xin

Xout - Xin
(b) lZout

_3>~~~~~~~~I_ r 1r I

(a)~~~~~~~Y|Y- -G-

Wout r-~ Win y - y + Win Xin
Xout - Xin
Wout - Win

(b)

41



Figure 8. Design Wl: systolic convolution array (a) and
cell (b) where wi's stay and xi's and yj's move systolically
in opposite directions.

each wi stays inside every cell it passes for one extra cycle,
thus taking twice as long to move through the array as any

xi. In this design, multiplier-accumulator hardware can be
used effectively and so can the tag bit method to signal the
output of the accumulator contents at e4ch cell. Com-
pared to design R 1, this design has the advantage that all
cells work all the time when performing a single convolu-
tion, but it requires an additional register in each cell to

hold a w value. This algorithm has been used for im-
plementing a pipeline multiplier.22

There is a dual version of design R2; we can have the
wi's move twice as fast as the xi's. To create delays for the
x data stream, this dual design requires a register in each
cell for storing an x rather than a w value. For cir-
cumstances where the wi's carry more bits than the xi's,
the dual design becomes attractive.

De.si<tA'i WI Weig'hts stav, inpuits anid reslults tnov,e in

op1po,site direction.5. In desig W 1 (and design W2,
below), seights stay, one at each cell, but results and in-

puts move systolically. These designs are not geared to the
most effective use of asailable multiplier-accumulator
hardware, but for some other circumiistanices they are

potenitially more efficient than the other designs. Because
the same set of saights is used for computing all the yv's
and different sets of the xi's are used for computinig dif-
ferent v,.'s, it is natural to hase the w,'s preloaded to the
cells and stay there, and let the -v's and the vj's move along
thc array. We wvill see some advantages of this arrange-

ment in the systolic array depicted in Figure 8, which is a

special case of a proposed systolic filtering array.3 This
design is fundamental in the sense that it can be naturally
extended to perform recursive filtering2'3 and polynomial
division.23

In design Wl, the w-'s stay and the v.'s and v.'s move
svstolically in opposite directions. Similar to design RI,
consecutise x's and y,.'s are separated by tswo cycle times.
Note that because the systolic path for moving the v'.'s
already exists, there is no need for another systolic output
path as in designs RI and R2. Furthermore, for each i, Y

outputs from the left-most cell during the same cycle as its

last input, x±-+A--, (or Xl+2 for k = 3), enters that cell.
Thus, this systolic array is capable of outputting ayievery
tso cycle times with constant response time. Design WI,
hossever, suffers from the same drawback as design RI,

Figure 9. Design W2: systolic convolution array (a) and
cell (b) where wi's stay and xi's and yj's both move
systolically in the same direction but at different speeds.

namely, only approximately one-half the cells work at any
given time unless two independent convolution computa-
tions are interleaved in the same array. The next design,
like design R2, overcomes this shortcoming by having
both the xi's and yi's move in the same direction but at dif-
ferent speeds.

Design W2-weights stay, inputs and results move in
the same direction but at different speeds. With design
W2 (Figure 9) all the cells work all the time, but it loses one
advantage of design W 1, the constant response time. The
output ofyi now takes place k cycles after the last of its in-
puts starts entering the left-most cell of the systolic array.

This design has been extended to implement 2-D convolu-
tions,6'24 where high throughputs rather than fast
responses are of concern. Similar to design R 1, design W2
has a dual version for which the xi's move twice as fast as

the yi's.

Remarks. The designs presented above by no mneains ex-
haust all the possible systolic designs for the con1Voluttion

problem. For example, it is possible to have systolic
designs where results, weights, and inputs all move during
each cycle. It could also be advantageous to include inside
each cell a "cell memory" capable of storing a set ot
weights. With this feature, u.sing a systolic control (or ad-

dress) path, sseights can be selected on-the-fly to imple-
ment interpolation or adaptive filtering.24 Moreover, the
flexibility introduced by the cell memories and systolic
control can make the same systolic array implement dif-
ferent functions. Indeed, the ESL systolic processor5'10
utilizes cell memories to implement multiple functionis in-
cluding convolution and matrix multiplication.
Once one systolic design is obtained for a problem, it is

likely that a set of other systolic designs can be derised
similarly. The challenge is to understand precisely the
strengths and drawbacks of each design so that an ap-

propriate design can be selected for a given ensironment.
For example, if there are more weights than cells, it's
useful to know that a scheme where partial results stay

generally requires less 1/0 than one where partial results
move, since the latter scheme requires partial results to be
input and output many times. A single multiplier-accu-
mulator hardware component often represents a cost-

effective implementation of the multiplier and adder
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Figure 10. Overlapping the executions of multiply and add in design WI.

needed by each cell of a systolic convolution array.
However, for improving throughput, sometimes it may
be worthwhile to implement multiplier and adder sepa-
rately to allow overlapping of their executions. Figure 10
depicts such a modification to design W 1. Similar
modifications can be made to other systolic convolution
arrays. Another interesting scenario is the following one.
Suppose that one or several cells are to be implemented
directly with a single chip and the chip pin bandwidth is
the implementation bottleneck. Then, since the basic cell
of some semi-systolic convolution arrays such as designs
Bi and F require only three I/O ports, while that of a
pure-systolic convolution array always requires four, a
semi-systolic array may be preferable for saving pins,
despite the fact that it requires global communication.

Criteria and advantages

Having described a family of systolic convolution ar-
rays, we can now be more precise in suggesting and evalu-
ating criteria for the design of systolic structures.

(1) The design makes multiple use of each input data
item. Because of this property, systolic systems can
achieve high throughputs with modest I/O bandwidths
for outside communication. To meet this criterion, one
can either use global data communications, such as
broadcast and unbounded fan-in, or have each input
travel through an array of cells so that it is used at each
cell. For modular expansibility of the resulting system,
the second approach is preferable.

(2) The design uses extensive concurrency. The process-
ing power of a systolic architecture comes from concur-
rent use of many simple cells rather than sequential use of
a few powerful processors as in many conventional ar-
chitectures. Concurrency can be obtained by pipelining
the stages involved in the computation of each single
result (for example, design B1), by multiprocessing many
results in parallel (designs RI and R2), or by both. For
some designs, such as Wl, it is possible to completely
overlap I/O and computation times to further increase
concurrency and provide constant-time responses.

To a given problem there could be both one- and two-
dimensional systolic array solutions. For example, two-
dimensional convolution can be performed by a oile-
dimensional systolic array24,25 or a two-dimensional
systolic array.6 When the memory speed is more than cell
speed, two-dimensional systolic arrays such as those
depicted in Figure 11 should be used. At each cell cycle, all
the I/O ports on the array boundaries can input or output
data items to or from the memory; as a result, the
available memory bandwidth can be fully utilized. Thus,
the choice of a one- or two-dimensional scheme is very
depenc ent on how cells and memories will be imple-
mented.
As in one-dimensional systolic arrays, data in two-

dimensional arrays may flow in multiple directions and at
multiple speeds. For examples of two-dimensional sys-
tolic arrays, see Guibas et al.26 and Kung and Lehman4
(type R), Kung and Leiserson5 and Weiser and Davis27
(type H), and Bojanczyk et al.28 and Gentleman and
Kung29 (type T). In practice, systolic arrays can be
chained together to form powerful systems such as the
one depicted in Figure 12, which is capable of producing
on-the-fly the least-squares fit to all the data that have ar-
rived up to any given moment.29

For the systolic structures discussed in the preceding
section, computations are pipelined over an array of cells.
To permit even higher concurrency, it is sometimes possi-
ble to introduce another level of pipelining by allowing
the operations inside the cells themselves to be pipelined.
(Note that pipelined arithmetic units will become increas-
ingly common as VLSI makes the extra circuits needed for

(a) c)

Figure 11. Two-dimensional systolic arrays: (a) type R, (b) type H, and
(c) type T.
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GIVEN AN n x p MATRIX X WITH
n - p, AND AN n-VECTOR y,
DETERMINE A p-VECTOR b SUCH THAT
Ily - xb 11 IS MINIMIZED.

STEP 1: ORTHOGONAL
TRIANGULARIZATION

STEP 2: SOLUTION OF TRIANGULAR
LINEAR SYSTEM

11 r- r i r - -1
L _ J _J L_ j

Ir- 1 r~ - -i '~~-LJ

'SYSTOLIC ARRAY FOR
SOLVING TRIANGULAR
LINEAR SYSTEMS

bl b2, . bip-lbp

Figure 12. On-the-fly least-squares solutions using one- and two.
dimensional systolic arrays, with p = 4.

staging affordable.) Both designs WI and W2 support
two-level pipelining.25 Since system cycle time is the time
of a stage of a cell, rather than the whole cell cycle time,
two-level pipelined systolic systems significantly improve
throughput.

(3) There are only afew types ofsimple cells. To achieve
performance goals, a systolic system is likely to use a large
number of cells. The cells must be simple and of only a few
types to curtail design and implementation costs, but ex-
actly how simple is a question that can only be answered
on a case by case basis. For example, if a systolic system
consisting of many cells is to be implemented on a single
chip, each cell should probably contain only simple logic
circuits plus a few words of memory On the other hand,
for board implementations each cell could reasonably
contain a high-performance arithmetic unit plus a few
thousand words of memory. There is, of course, always a
trade-off between cell simplicity and flexibility.

(4) Data and controlflo ws are simple and regular. Pure
systolic systems totally avoid long-distance or irregular
wires for data communication. The only global commu-
nication (besides power and ground) is the system clock.
Of course, self-timed schemes can be used instead for syn-
chronizing neighboring cells, but efficient implementa-
tions of self-timed protocols may be difficult. Fortunate-
ly, for any one-dimensional systolic array, a global clock

parallel to the array presents no problems, even if the ar-
ray is arbitrarily long. The systolic array (with data flow-
ing in either one or opposite directions) will operate cor-
rectly despite the possibility of a large clock skew between
its two ends.30 However, large two-dimensional arrays
may require slowdown of the global clock to compensate
for clock skews. Except for this possible problem in the
two-dimensional case, systolic designs are completely
modular and expandable; they present no difficult syn-
chronization or resource conflict problems. Software
overhead associated with operations such as address in-
dexing are totally eliminated in systolic systems. This ad-
vantage alone can mean a substantial performance im-
provement over conventional general-purpose com-
puters. Simple, regular control and communication also
imply simple, area-efficient layout or wiring-an impor-
tant advantage in VLSI implementation.

In summary, systolic designs based on these criteria are
simple (a consequence of properties 3 and 4), modular
and expandable (property 4), and yield high performance
(properties 1, 2, and 4). They therefore meet the architec-
tural challenges for special-purpose systems. A unique
characteristic of the systolic approach is that as the
number of cells expands the system cost and performance
increase proportionally, provided that the size of the
underlying problem is sufficiently large. For example, a
systolic convolution array can use an arbitrarily large
number of cells cost-effectively, if the kernel size (that is,
the number of weights) is large. This is in contrast to other
parallel architectures which are seldom cost-effective for
more than a small number of processors. From a user's
point of view, a systolic system is easy to use-he simply
pumps in the input data and then receives the results either
on-the-fly or at the end of the computation.

Summary and concluding remarks

Bottlenecks to speeding up a computation are often due
to limited system memory bandwidths, so called von Neu-
mann bottlenecks, rather than limited processing cap-
abilities per se. This problem can certainly be expected for
I/O-bound computations, but with a conventional archi-
tectural approach, it may be present even for compute-
bound computations. For every operation, at least one or
two operands have to be fetched (or stored) from (or to)
memory, so the total amount of I/O is proportional to the
number of operations rather than the number of inputs
and outputs. Thus, a problem that was originally com-
pute-bound can become I/O-bound during its execution.
This unfortunate situation is the result of a mismatch be-
tween the computation and the architecture. Systolic ar-
chitectures, which ensure multiple computations per
memory access, can speed up compute-bound computa-
tions without increasing I/O requirements.
The convolution problem is just one of many compute-

bound computations that can benefit from the systolic
approach. Systolic designs using (one- or two-dimen-
sional) array or tree structures are available for the
following regular, compute-bound computations.

Signal and image processing:
* FIR, IIR filtering, and 1-D convolution2'3'31:
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2-D convolution and correlation6'8'10'24'25;
discrete Fourier transform2'3;
interpolation24;
l-D and 2-D median filtering32; and
geometric warping.24

Matrix arithmetic:
* matrix-vector multiplication5;
* matrix-matrix multiplication5'27;
* matrix triangularization (solution of linear systems,

matrix inversion)5'29;
* QR decomposition (eigenvalue, least-square compu-

tations)28'29; and
* solution of triangular linear systems.5

Non-numeric applications:
* data structures-stack and queue,34 searching, 15,35,36

priority queue,7 and sorting7"15;
* graph algorithms-transitive closure,26 minimum

spanning trees,37 and connected components38;
* language recognition-string matching1 and regular

expression39;
* dynamic programming26;
* encoders (polynomial division)23; and
* relational data-base operations.4'40

Itl general, systolic designs apply to any compute-
bound problem that is regular-that is, one where repeti-
tive computations are performed on a large set of data.
Thus, the above list is certainly not complete (and was not
intended to be so). Its purpose is to provide a range of
typical examples and possible applications. After study-
ing several of these examples, one should be able to start
designing systolic systems for one's own tasks. Some
systolic solutions can usually be found without too much
difficulty. (I know of only one compute-bound problem
that arises naturally in practice for which no systolic solu-
tion is known, and I cannot prove that a systolic solution
is impossible.) This is probably due to the fact that most
compute-bound problems are inherently regular in the
sense that they are definable in terms of simple.recur-
rences. Indeed, the notion of systolicity is implicit in quite
a few previously known special-purpose designs, such as
the sorting41 and multiply designs.22 This should not
come as a surprise; as we have been arguing systolic struc-
tures are essential for obtaining any cost-effective, high-
performance solution to compute-bound problems. It is
useful, however, to make the systolic concept explicit so
that designers will be conscious of this important design
criterion.

While numerous systolic designs are known today, the
question of their automatic design is still open. But recent
efforts show significant progress.27'42 Leiserson and
Saxe, for instance, can convert some semi-systolic
systems involving broadcasting or unbounded fan-in into
pure-systolic systems without global data communica-
tion.42 A related open problem concerns the specification
and verification of systolic structures. For implementa-
tion and proof purposes, rigorous notation other than in-
formal pictures (as used in this article) for specifying
systolic designs is desirable.
With the development of systolic architectures, more

and more special-purpose systems will become feasi-

ble-especially systems that implement fixed, well-under-
stood computation routines. But the ultimate goal is ef-
fective use of systolic processors in general computing en-
vironments to off-load regular, compute-bound compu-
tations. To achieve this goal further research is needed in
two areas. The first concerns the system integration: we
must provide a convenient means for incorporating high-
performance systolic processors into a complete system
and for understanding their effective utilization from a
system point of view. The second research area is to
specify building-blocks for a variety of systolic processors
so that, once built, these building blocks can be pro-
grammed to form basic cells for a number of systolic
systems. The building-block approach seems inherently
suitable to systolic architectures since they tend to use on-
ly a few types of simple cells. By combining these build-
ing-blocks regularly, systolic systems geared to different
applications can be obtained with little effort. U
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