
147 OCR Output

system performance.
future system designs can be expected to leverage both density and speed to achieve additional
exploiting both technological density and speed. Since these basic trends are projected to continue,
this, computer systems have been required to take approaches that improve performance by
exceeds the rate of improvement in transistor speed and digital storage access speeds. To achieve
Despite these underlying trends, the performance of computer systems has increased at a rate which

technological approaches.
projected to continue through the foreseeable future in the absence of fundamentally new
data stored. These basic trends have been true throughout the history of computer systems and are
important trend reflected is that capacity is improving at a faster rate than time taken to access the
technologies: dynamic random access memories and magnetic disk storage. Here again, the
Figures 2 and 3 show the trends in capacity and access time for two important digital storage
important trend to notice is that capacity improves at a more rapid rate than transistor speed.
shows the trend in increasing capacity and performance for digital switching technologies. The
density and speed of digital switches and the density and access time of digital storage. Figure 1
The key hardware technologies that affect computer architectures are those that determine the

General

projected.
technologies on computer system architectures past, present, and future will be explored and
language, have also resulted in new capabilities and design points. The impact of these
machine language to assembly language to high-level procedural language to object-oriented
in software, which includes the transition of the predominant approach to programming from
fundamentally different trade-offs in the architecture of computer systems. Additional advances
electromechanical relays to vacuum tubes to transistors to integrated circuits has driven
underlying trends and capabilities of hardware and software technologies. The transition from
Computer system architecture has been, and always will be, significantly influenced by the

Abstract

IBM, Austin, Texas

Fl. D. Groves

Brief History of Computer Architecture Evolution and Future Trends

148 OCR Output

Source: IBM and [2].
Figure 2: Using their 1980 capabilities as a baseline, the row access perfomlance ot DRAM and the DRAM capacity is plotted over time.

Year

1 980 1983 1 986 1989 1 992
1 00%

Row access pédoltninff

_/#1 ,000%
0;/w ·*·-·· /

cb _../ ·

b 10,000%

1 00,000%

plotted over time. Source: IBM and {1].
Figure 1: Using their 1983 capabilities as a baseline, transistor speed and the number of available CMOS circuit elements per die is

Year

1 983 1 986 1989 1 992 1 995 1 998
1 00%

/

· tor SP

1,000%
M f"

\@ C"
\${`_

G\6\\·
${5 ··___,

r'

§ 10,000%

1 00,000%

149 OCR Output

technologies were changing to the point where a fundamentally new set of design trade-offs was
As this trend toward more complex instructions continued into the 1970`s, the underlying

"semantic gap" between the high-level languages and the machine-level instruction set.
of the compiler could be simplified if more complex instruction sets could be used to close the
doing more "work" for each instruction fetched. Many architects were also convinced that the job
sets. More complicated instructions helped overcome the memory-processor performance gap by
These technological constraints drove computer architects to provide ever more complex instruction
early FORTRAN compilers were demonstrating quite astounding results for this time period).
infancy and efficient compilation still eluded the general programming environment (though many
faster than those programmed as function or subroutine calls. Compiler technology was still in its
processor speeds that functions implemented as instructions would execute as much as ten times
In the late l950's and early l960's, the gap was wide enough between memory technologies and

eventually, to high-level procedural languages.
Advancing software technology allowed programming to move to the assembly language level and,
denser and faster, the number of registers and the complexity of the instruction sets were increased.
efficient exploitation of the limited number of switches and storage capacity. As hardware became
instructions and register sets combined with machine level programming, to provide the maximum in
technologies were very immature. These facts drove computer architectures, which used very simple
In the earliest computer systems, both density and speed were quite modest; and software

are plotted over time. Source; IBM and [3].
Figure 3: Using their 1957 capabilities as a baseline, magnetic disk areal density, and the average number of disk accesses per seoond

Year

19751957 1985 19941965

100 %

%Q 1,000

d T1 Accesses p€\' SGCO
WoE 10,000

_•__ 100,000 Wa

Q6
1,000,000 7 o

Wo

150 OCR Output

divide as well as almost all floating-point operations would have to be programmed from simpler,
restricted to a single cycle operation. This implied that important functions like integer multiply and
environment. Another example that all three projects explored was whether all instructions could be
Theoretically this was a very nice concept, but not practical in the open systems software
trusted operating system and compiler using a language which did not allow unbounded pointers.
the 801 project was attempting to eliminate the need for storage protection hardware by relying on a
Fortunately, many of these proposed approaches never left the laboratory. For example, at one point
unless proven otherwise. Thus, these projects explored all the boundaries of these design trade-offs.
projects took the extreme opposite view of assuming that everything should be done in software
relative to the trade-offs between hardware and software. As often happens in major changes, these
These projects challenged all of the existing fundamental concepts and approaches being used

Stanford MIPS [8] projects.
these observed technological changes, including the IBM 801 [5], Berkeley RISC [6, 7], and
architectures. Several seminal research projects were undertaken in the mid to late l970's based on
hardware technologies and the fundamentals all pointed to a major change in computer system
language. Combine all of these changes with the dramatically increasing density of the underlying
specifically written for the specific hardware system and almost no code written in assembly
software in the system would be written in a portable, high-level language with relatively little code
UNIX is the most obvious example, was creating a system design point in which most of the
From an operating system perspective, the trend towards portable operating systems, of which

blocking techniques and loop transformations which enabled them.
efficient exploitation of the cache and memory hierarchy became possible with the advent of cache
problem was dramatically improved by the introduction of register coloring approaches [4]. The
hierarchy. The use of registers has always been problematic for compilers. The register allocation
of technologies for compilers involved algorithms which allowed efficient utilization of the storage
as good or better than that generated by average assembly language programmers. Another key set
the dramatic reduction in the amount of code generated. These optimizations often resulted in code
very simple IL operations, all operations were exposed to the optimization algorithms resulting in
operations in the intermediate languages (H,) for performing the optimizations against. By using
be most effective when certain simplifying assumptions were used, including the use of very simple
Compiler technologies were advancing as well. Compiler optimization technologies were proving to

because of the ability to exploit the temporal- and spatial-locality of most memory accesses.
data proved quite effective in reducing the average latency (access time) to the memory subsystem
high-speed, writeable memories, called caches, to contain the most recently used instructions and
the field as errors were discovered and corrected. At about the same time, the concept of using
most computer systems began using a writeable control store so that corrections could be made in
reached a point where the correctness of this rnicrocode could not be adequately assured. Thus,
complex, this control store became larger and more complex as well. By the l970's, the complexity
executed a "microprogram" contained in this high—speed storage. As instruction sets became more
high-speed, read-only control memory that actually interpreted the complex instructions and
possible for optimum system performance. Complex instructions were actually implemented using a

151 OCR Output

associated with subroutine calls and returns, it does restrict optimization across subroutines and
layers of the subroutine-call hierarchy in registers. While this approach does reduce the overhead
SPARC architecture supports a feature called register windows which keeps the context of several
complicated. Thus, cache-to-I/O coherency is now supported in hardware for PowerPC. The Sun
efficiently for the common case of paging I/O, the overhead for "raw" I/O is significant and
requiring all cache—to-I/O coherency to be managed in software. While this has been made to work
management and coherency with I/O. The IBM POVVER architecture took this to the extreme of
commercialization. Most of these systems made some simplifying assumptions relative to cache
Some, less than optimal, trade-offs did survive the transition from the laboratory to

engineering/scientific applications, and established a significant foothold in the marketplace.
systems provided very attractive performance and price/performance, particularly in
require careful attention to the design of the cache and memory subsystem. Nevertheless, the initial
benchmarks, are dominated by cache and memory effects rather than the raw CPU capabilities and
stressful on the memory hierarchy, similar to that exhibited by the NAS parallel and TPC—C
interesting workloads of which the SPEC benchmarks are representative. Workloads that are more
instruction path lengths and to execute nearly one instruction every cycle for a wide variety of
optimization. Initial implementations of these architectures were able to achieve competitive
instruction set that can be implemented efficiently in hardware and lends itself to efficient compiler
These features all reflect the fundamental philosophy of creating a simple, straightforward

predetermined by the instruction set architecture.
cache as opposed to a microcode control store where the functions contained there are
is that the code for the most frequently used functions automatically migrates to the instruction
store that previous machines used to contain microprograms. The advantage of an instruction cache
instruction bandwidth and to provide a logical replacement for the high-speed microcode control
simple, single-cycle instructions. Separate instruction caches are used to supply the necessary
multiply/divide and floating-point operations, the rest of their instruction sets are optimized around
data from/to memory to/from an intemal register. With the exceptions of operations such as integer
bit addressing). Data references are restricted to explicit load and store instructions which transfer
addressing with extensions to 64-bit addressing (Alpha being the only one which supports only 64
general purpose registers as well as at least 16 floating-point registers. All have at least 32-bit
instruction decode extremely easy (sacrificing information density for ease of decode). Each has 32
characteristics. All have fixed-length (32—bit) instructions with relatively few formats making
Packard PA-RISC, and Digital Equipment Alpha. All of these architectures share some common
SPARC (based on Berkeley RISC), Silicon Graphics MIPS (based on Stanford MIPS), Hewlett
The resulting commercialized RISC architectures included IBM POWER (based on the 801), Sun

significantly impacted the overall performance for these operations.
making subroutine calls to special primitive instructions to perform these functions would have
perform independent floating-point operations every cycle); and the overhead associated with
required for these operations had reduced significantly (with many of today's RISC CPUs able to
operations were included. With the increased density of circuits available, the number of cycles
one—cycle primitives. By the time these architectures were commercialized, these more "complex"

152 OCR Output

DEC Alpha removed the delayed branch from their architectures.
complexity for no performance gain. This is why later RISC architectures like IBM POWER and
eliminated from the pipeline. Thus, not only is the delayed branch not needed, but it also adds
looking ahead into the instruction stream so that taken and untaken branches are essentially
On the other hand, superscalar implementations usually process branch instructions separately
treated as an atomic pair of instructions creating extra complexity especially under error conditions.
complexity to the design since the delayed branch and its subsequent instruction often had to be
achieving the nearly one instruction per cycle goal of these systems. However, this feature did add
finding instructions that could be placed in this delay slot; and this feature was very important for
that could be executed during this otherwise idle cycle. Compilers were typically quite successful in
processors, the delayed branch allowed the compiler to insert a useful instruction after the branch
architectures. Since a taken branch introduced a "bubble" of one cycle in the pipeline of these early
superscalar implementations. The most obvious was the inclusion of the "delayed branch" in these
However, some of the early RISC architecture decisions proved problematic in the move to

necessary to dispatch and execute multiple instructions in one cycle.
operations all greatly simplified the task of resolving interdependencies and resource conflicts
and formats, the large number of general purpose registers, and the relatively few complex
made earlier mapped very well to superscalar implementations. The regularity of the instruction set
that achievable by mere circuit switching speed improvements. Many of the architectural decisions
would allow the exploitation of additional circuit densities to increase system performance above
superscalar implementations). This was driven by the fact that doing more operations in one cycle
current state of the art of nearly one instruction per cycle to multiple instructions per cycle (or
After the initial RISC implementations, the focus of computer architects began to move from the

Instruction-level Parallelism

future potential will be discussed.
simultaneously on more than one processor). Each of these approaches and their current status and
or process), and algorithmic parallelism (dividing up a single problem so that it can be executed
instruction per cycle), task/process-level parallelism (simultaneous execution of more than one task
parallelism that have been explored include: instruction-level parallelism (executing more than one
growth which exceeds that of the underlying switching speed improvements. The forms of
Exploitation of parallelism leverages the increasing circuit densities to achieve system performance
performance gains would be limited to that obtained from faster circuit switching speeds.
already executing close to one instruction per cycle, without parallelism, almost all future
performance gains would have to come from the exploitation of parallelism. Since CPUs were
After the initial round of implementations, computer architects realized that most future

additional hardware circuits and complexity.
increases the overhead of context switching. The overall benefits are small and do not justify the

153 OCR Output

into a single very-long·instruction word.
of parallel functional units, but only executes those operations in parallel that the compiler places
compile—time information which is often more complete. The hardware implements a large number
which instruction to execute, or speculatively execute, in a given cycle to the compiler based on
instructions to be dispatched simultaneously increases. VLIW approaches move the determination of
on information available at run time. This is a geometrically complex problem as the number of
determine what instructions can be executed, or speculatively executed, on a given cycle based only
requires an ever more complex instruction dispatch unit that can look past multiple branches and
for superscalar designs is instruction dispatch. To exploit additional instruction-level parallelism
has given ascendancy to very long instruction word (VLIW) techniques [9]. The fundamental limit
instruction—level parallelism with purely superscalar approaches is reaching diminishing returns. This
Despite the success of superscalar RISC processors, the ability to efficiently exploit more

rapidly fallen out of favor.
exploit the extra density of circuits and puts extra stress on the circuit switching speeds, it has
by making deeper pipelines instead of more parallel functional units. Since this approach does not
Alpha which was both superscalar and superpipelined). The approach here was to exploit parallelism
introduced in the market (most notably the MIPS R4000 and, to some degree, the original DEC
sustained with today's implementations. For a brief period, a few "superpipelined" processors were
floating—point instructions in parallel provides the ability to execute 3 to 6 instructions per cycle
particularly in engineering/scientific applications where the ability to execute fixed-point and
key vendors and have delivered even more impressive performance and price/performance
System/6000 in 1990, increasingly aggressive superscalar implementations have appeared from all
Since the introduction of the first superscalar RISC, the IBM POWER microprocessors in the RISC

setting of these condition codes in the instruction set.
multiple, independent condition codes for use by the compiler as well as complete control of the
these registers with the integer unit. The IBM POWER architecture is unique in having architected
could be used for other computations, and adds complexity in branching logic which must then share
inefficient (only one bit of information in a 64-bit register), uses precious register locations that
architectures do provide the ability to place conditions into a general purpose register which is
the MIPS and Alpha architectures combine the compare and branch into a single instruction. These
this in mind and have mixed capabilities in this area. Most have a single condition code, or worse,
implemented for the same level of performance. Most RISC architectures were not designed with
accuracy of the branch resolution and prediction capabilities and simplifying what must be
the opportunity to set and resolve them as early as possible in the code, greatly improving the
Architectures which provide the ability for multiple, independent condition codes allow the compiler
branch instructions. Control flow is typically predicated on the testing of condition codes.
execution requires significant amount of resources either resolving or predicting the outcome of
taken branch every 5 instructions; so, to achieve any reasonable levels of parallel instruction
limited by the ability to deal with the changes in control flow. Average instruction streams contain a
Another area of concern with superscalar implementations is that performance tends to be ultimately

‘l 54 OCR Output

single processor that was time-shared between multiple, simultaneous contexts on a
task/process parallelism at the individual processor level. Early CDC I/O processors were actually a
processors. This is a trend that will continue. Recently, interest has been revived in exploiting
Symmetric Multiprocessor (SMP) systems by running independent tasks or processes on separate
simultaneously on most computer systems. This level of parallelism has been exploited naturally by
An obvious source of parallelism is the multiple, independent tasks and processes which run

Task/Process Parallelism

latency will become increasingly important in the future.
already in the processors. Algorithms and hardware implementations that are able to better tolerate
parallelism and speculation into the cache subsystem to match the parallelism and speculation that is
of these focus on ways to decrease the average latency of cache misses and reflects incorporating
caching; multiple, simultaneous outstanding cache misses; and cache line prefetching approaches. All
increasing performance gap. All of this is driving system designs which include multiple levels of
CPU performance is increasing at a faster rate than the access time of main memory creating an
and the latency for resolving a cache miss is also increasing in relative terms. As figure 4 shows, the
with the levels of parallelism being achieved, the number of cache requests per cycle is increasing;
and instructions are contained within the high-speed caches connected to the processors. However,
processors can achieve very impressive levels of instruction—level parallelism as long as their data
an increasingly important aspect of system architecture and design. VLIW and superscalar
Independent of VLIW or superscalar processors, the problem of "finite cache effects" is becoming

players working to determine how to best exploit VLIW technology in their future systems.
exploit increasing density in the future. This remains a field of very active research with all major
parallelism in the underlying implementations to allow multiple price/performance points and to
commercially successful.) Also, a VLIW architecture must be able to support differing levels of
applications without requiring a recompile. (In fact, this may be necessary for them to be
acceptance of a new VLIW machine would be greatly enhanced by being able to support all existing
binary code. Now that RISC computers have established themselves in the industry, market
architectures and the ability to support a range of VLIW implementations with the same compiled
years, but many issues remain unresolved. The biggest issues are compatibility with existing RISC
Major advances in the state of the art of VLIW hardware and software have been made in recent

resolve multiple branches in a single cycle implying the need for multiple condition codes.
32 registers typical of today's RISC architectures. They also fundamentally require the ability to
VLIW architectures which leverage large numbers of parallel functional units require more than the

155 OCR Output

among several independent processors to work on the problem simultaneously. Some problems
problem on a computer to come up with a new approach which will be able to be efficiently divided
Algorithmic parallelism involves rethinking the fundamental algorithms being used to solve a
turn·around time for a single problem or task, and may actually negatively impact throughput.
tasks/processes to be completed per unit time. Algorithmic parallelism attempts to improve the
Task/process parallelism is able to improve the throughput of a computer system by allowing more

Algorithmic Parallelism

misses.

to be effective, the cache subsystems must be capable of supporting multiple, outstanding cache
the latency of the cache miss, thus improving the efficiency of CPU utilization. For these approaches
such as a cache miss. This would allow useful processing to be performed in other contexts during
a single cycle). Context switches would be initiated when a long running operation is encountered
within a single processor with a very lightweight mechanism for switching contexts (on the order of
cycle by cycle basis. In a similar fashion, much research is being done on sharing multiple contexts

performance gap. Source: [10].
1985 and 100% per year thereafter. Note that the vertical axis must be on a logarithmic scale to record the size ofthe processor-DRAM
year until 1985 and a 50% improvement thereafter. The fast processor line assumes a 26% performance improvement between 1980 and
DRAM baseline is 64 KB in 1980, with three years to the next generation. The slow processor line assumes a 19% improvement per
Figure 4: . Using their 1980 performance as a baseline, the performance of DFlAMs and processors is plotted over time. The

19ao 19a1 19a2 19a; 19a4 1985 19as 19ar 19as 19a9 1990 1991 1992

10W/¤

1 ,000%

WJ ($0*/)

10,(XD%

WJ (fw)
100,®G%

156 OCR Output

level of sharing can also improve the availability of a system, as well.
any failure in any component is highly likely to bring down the whole system. Thus, reducing the
problems. Because memory, I/O, and the operating system are all shared between all the processors,
In addition to performance scaling problems, UMA MP systems also suffer from system reliability

the low double digits.
sharing. Even with all these valiant efforts, the limit of scalability of UMA systems will remain in
enhancements will be added which speed up the cases where the algorithms themselves require
consists of various switched media to reduce the amount of implicit sharing. Further hardware
shared-bus systems to systems in which the connection among the CPUs and memory and I/O
processor increases. This will drive SMP systems to move from today’s dominant design point of
scalability of these designs. This problem only becomes worse as the speed of each individual
the processors creates a significant amount of implicit sharing which fundamentally limits the
algorithmic parallelism. The fact that memory, I/O, and the operating system are all shared by all
While UMA MP technology is quite mature, it does have some drawbacks for the exploitation of

tools to be able to execute on multiple processors simultaneously.
that wish to exploit parallelism are provided with a set of programming interfaces, services, and
give the impression of a uniprocessor to the users and all uniprocessor applications. Applications
typically run a single copy of the operating system that has been altered to exploit parallelism and to
(SMPs). They are characterized by all processors having equal access to all memory and I/O. They
This represents the sharing model of most commercially successful symmetric multiprocessors

Uniform Memory Access

(UMA), non-uniform memory access (NUMA), and no remote memory access (NORMA).
operating systems. These three types of multiprocessors have been called: uniform memory access
level, while still providing an efficient environment for the current state of the art in applications and
system designs are exploiting three approaches to reduce the amount of sharing at the hardware
between the processors, but are not sharing constraints imposed by the algorithms. Computer
sharing can also occur because buses, cache lines, or other implementation artifacts are shared
processors. Sharing can exhibit itself at the instruction, data, or I/O level. In actual implementations,
The fundamental limit of parallelism and scalability is the level of sharing required between the

exploit high levels of multi-processor parallelism.
efficient and scalable approach. Almost all problems require significant redesign of algorithms to
require very little rework to accomplish this, though most require significant efforts to create an

157 OCR Output

The downside is that since all services are not global, the migration from UMA machines is
where no sharing exists and adding sharing and cooperation as needed through the global services.
the resources of the whole system. This approach has the advantage of starting from a design point
operating system); and then provide global services that each operating system copy uses to manage
A second approach is to run separate copies of the operating system locally (i.e. replication of the

has been taken by most NUMA machines in the marketplace.
preserved that helps applications in the transition from UMA machines. This is the approach that
global task dispatch algorithm. The advantage of this approach is that a single system image is
more distributed approaches such as having local task dispatch queues coordinated by an overall
remote/local optimizations. This will ultimately entail replicating many operating system services to
an operating system designed for UMA machines to deal with replication of memory and
The design of the operating system for NUMA systems has two approaches. The first is to modify

time with only run-time information, this is a difficult task in the general case.
data be moved also. Since the operating system and hardware are attempting to manage this at run
must sometimes be migrated to other processors. This migration requires that the associated local
trying to balance processing loads among the multiple processors requires that processes or tasks
is not being shared having been allocated to addresses too close together. Also, the realities of
allocated in discrete sizes (such as pages or cache lines), false sharing can occur by having data that
Further complicating the situation is the fact that since all addressing is common, but data is

and read by more than one processor.
locally by default. The challenge comes in reducing the amount of sharing of data that is updated
being used and all references can be made local. Data (or instructions) that are not shared only exist
only data (or instructions) that are shared, a replicated copy can be placed locally everywhere it is
and the operating system to reduce sharing. Some of this is accomplished by replication. For read
systems. Thus, the scalability of NUMA systems is highly dependent on the ability of the application
the average percentage of remote accesses is the ultimate determinant of scalability in NUMA
NUMA designs will function well provided most accesses can be made to local resources. In fact,

be packed more densely without increasing access times.
times. Thus, uniform access designs eventually reach a point where processors and memory cannot
significant physical constraints on the design since the speed of light ultimately determines access
to construct systems which scale to much larger numbers of processors. Uniform access places
By relaxing the requirement for uniform access, the hardware system designers are more easily able

"remote". Usually the bandwidth is higher to local resources than it is to remote resources.
"local" to that processor. Memory and I/O which is farther away is either referred to as "global" or
noticeable longer. That memory and I/O with the shortest access time is usually referred to as
however, the access time from any given processor to some of the memory and I/O in the system is
NUMA machines share a common address space between all processors and their memory and I/O;

Non-Uniform Memory Access

158 OCR Output

machines. This, of course, leverages increasing density for more performance.
Again, NORMA machines achieve performance by exploiting replication, even more so than NUMA

of supporting both simultaneously.
similarities, some of the current research projects are attempting to design machines that are capable
miss in a NUMA machine) or software (a PUT/GET in a NORMA machine). Because of these
similar in hardware. The key difference is whether the transfer was initiated by hardware (a cache
an application (with a PUT or GET command). The actual process of doing the data transfer is very
miss to a remote node. In a NORMA machine, data is transferred between nodes at the request of
other nodes. In a NUMA machine, data is transferred from one node to another based on a cache
machines consist of nodes with local memory and I/O interconnected through some kind of fabric to
machine that supports remote memory copy, much of the hardware required is quite similar. Both
In fact, if one looks at what is required to implement an efficient NUMA machine and a NORMA

NORMA architectures since method invocations are essentially messages.
NORMA machines. Also, the move to object—oriented application design lends itself well to
compilers and application writers to be able to more easily design and move applications to
semantic gap between shared-memory programming and message-passing programming and allow
another node on the system in a very lightweight fashion. This capability will further close the
operations which allows an application to copy to/from another application's address space in
and to improve performance, NORMA machines are beginning to provide "remote memory copy"
well. However, most applications have yet to make this transition. To assist in this complex process
demonstrated this capability for applications which have been structured to have limited sharing, as
The NORMA approach is clearly the most scalable from a hardware perspective and has

by the coordinating layer.
shared-memory communication constructs and to use only those services that are globally enabled
system. Applications must be structured and written to exploit message passing as opposed to
by a layer of software which coordinates the activities of the multiple copies of the operating
mentioned for NUMA operating system design, global services and resource allocation are provided
messages between nodes particularly at the application level. Much like the second approach
performance NORMA machines focus on improving the bandwidth and latencies of sending
a NORMA machine cooperate with other nodes through the sending of messages. High
NORMA machines do not share memory, I/O, or operating system copies. The individual nodes in

No Remote Memory Access

exploiting density improvements to improve performance.
the use of replication. Since replication explicitly uses more memory, this is another example of
The common thread here is that NUMA machines provide scalability by reducing sharing through

global resources is usually non-trivial.
complicated. Furthermore, modifying the operating system to be able to cooperate on controlling

159

Hardware/Software Interface, Morgan Kaufmann Publishers, San Mateo, CA (1994).
[10] J .L. Hennessy, and D.A. Patterson, Computer Organization and Design, The

International Symposium on Computer Architectures, ACM, pp. 140-150 (June 13-17, 1983).
[9] J.A. Fisher, 'Very Long Instruction Word Architectures and the ELI-512‘, The 10th Annual

1221-1246 (December 1984).

[8] J.L. Hennessy, 'VLSI Processor Architecture', IEEE Transactions on Computers, C-33. 12, pp.
8-21 (January 1985).

[7] D.A. Patterson, 'Reduced Instruction Set Computers', Communications ofthe ACM, 28.1, pp.
SIGARCH ComputerArchitecture News, 8.6, ACM, pp. 25-33 (October 15, 1980).

[6] D.A. Patterson, and D.R. Ditzel, 'The Case for the Reduced Instruction Set Computer',
Development, 27.3, pp. 237-246 (May 1983).
pp. 39-47 (March 1982), Revised version published in IBM Journal of Research and

[5] G. Radin, 'The 801 Minicomputer', SIGARCH Computer Architecture News, 10.2, ACM,
'Register Allocation via Coloring‘, Computer Languages, 6.1, pp. 47-57 (1981).

[4] GJ. Chaitin, M.A. Auslander, A.K. Chandra, J. Cocke, M.E. Hopkins, and P.W. Markstein,
(September 1981).
Disk File lnnovation’, IBM Journal of Research and Development, 25.5, pp. 677-689

[3] J.M. Harker, D.W. Brede, R.E. Pattison, G.R. Santana, and L.G. Taft, ‘A Quarter Century of
Kaufmann Publishers, San Mateo, CA (1990).

l2l D.A. Patterson, and J.L. Hennessy, Computer Architecture, A Quantitive Approach, Morgan
Journal of Research and Development, 39.1-2, pp. 5·22 (1995).

[ll R.F. Sechler, and G.F. Grohoski, ‘Design at the System Level with VLSI CMOS’, IBM

References

architectures that exploit density and parallelism over raw performance.
raw performance. Thus, we can expect continued advancements in those approaches and
provides huge increases in density over current systems, but much more limited improvements in
well as the research into using DNA to do computations. In the limit, molecular-level computing
driving research in the area of using "biological" or "genetic" algorithms for application design as
which only the "best" answers survive to the next round of computation. These are the concepts
approach DNA uses to improve life on our planet. All living entities are a parallel computation of
select the right final answer while discarding all of the other computations. This is analogous to the
The limit of replication and speculation is to compute all possible outcomes simultaneously and to

mutually exclusive and will likely all be used in concert to improve performance in future systems.
task/process-level parallelism, and algorithmic parallelism. These three levels of parallelism are not
parallelism. Three levels of parallelism have been exploited: instruction-level parallelism,
by the use of replication and speculative execution within systems through the exploitation of
designed by exploiting the increase in density of digital switches and storage. This is accomplished
faster than the underlying increase in performance of the digital switches from which they are
technologies to achieve increasing levels of performance. Computer performance has increased
Computer architectures have evolved to optimally exploit the underlying hardware and software

Summary

