
DESIGN OF TRANSPORT TRIGGERED ARCHITECTURE PROCESSOR
FOR DISCRETE COSINE TRANSFORM

Jari Heikkinen, Jaakko Sertamo, Tino Rautiainen, and Jarmo Takala

Tampere University of Technology, P.O.B. 553, FIN-33101 Tampere, Finland

ABSTRACT

The trend in programmable architectures for digital sig-
nal processing is to move towards high-level language
programming and customizable architectures. Several
design methodologies have been proposed for design-
ing application-specific instruction-set processors (ASIP)
where the hardware resources are tailored according to the
requirements of the application. This paper describes the
design of an ASIP for a 32-point discrete cosine trans-
form using the tools from the MOVE framework, which is
a semi-automatic design methodology for designing pro-
cessors that utilize the paradigm of transport triggered ar-
chitecture. Estimations of the designed processor are ob-
tained on program execution, code size, timing and area.

I. INTRODUCTION

The current trend in programmable architectures in the
field of digital signal processing (DSP) is to move towards
high-level language (HLL) programming and customiz-
able architectures [1]. The reason behind this is the in-
creasing gap between the productivity of designers and
increased complexity of DSP applications. By using cus-
tomizable architectures, the hardware resources of the pro-
cessor can be tailored according to the requirements of
the application. However, it is difficult to find a satisfact-
ory solution from the large design space; several differ-
ent architecture alternatives must be designed and evalu-
ated. Efficient evaluation requires a set of software tools,
such as HLL compiler, assembler, linker, and instruction
set simulator, which must be developed for each architec-
ture configuration. However, some design methodologies
for customizable processors have been proposed. In [2],
several digital signal processor specific features are added
to a RISC core to improve the performance in DSP ap-
plications. A new compiler for the refined architecture is
obtained by using a dedicated code-converter that modifies
the assembly code generated by the RISC compiler.

In [3], a development system for designing application-
specific instruction-set processors (ASIP) for DSP applic-
ations is proposed. Hardware resources and instruction set
are described using a specification language. A satisfact-
ory architecture solution is obtained by modifying manu-
ally the processor specification. A performance analyzer is
used to obtain information on performance and cost.HDL

description of the processor design is obtained automat-
ically. Applications described in HLL are compiled us-
ing a retargetable compiler. Another similar design meth-
odology proposed in [4] is based on LISA machine de-
scription. Software tools, such as assembler, linker, sim-
ulator, and debugger front-end, can be generated automat-
ically from a LISA specification describing the hardware
resources and operations of the architecture. A standard
profiling tool can be used to obtain information of the crit-
ical parts of the application, thus the designer can create
the LISA model of the architecture. LISA tools generate
the HDL of the data path and control part but execution
units of the data path must be coded manually. The tools
described in [4] do not contain a HLL compiler and thus
applications need to be described in assembly language.

Very long instruction word (VLIW) architectures have
been widely used in digital signal processing. VLIW ar-
chitectures are modular; the number of function units (FU)
can be increased. There are even VLIW architectures,
which support customized, application-specific function
units. In VLIW, this may, however, restrict the flexib-
ility, e.g., in Trimedia [5], support for multi-operand in-
structions, i.e., multi-operand FU, reserves several instruc-
tion fields from the VLIW instruction. VLIW architec-
tures have also been criticized for their requirements for
read/write ports in the register file [6].

An alternative architecture where the drawbacks of
VLIW architecture can be avoided is transport triggered
architecture (TTA) [7] where a program describes only the
operand transfers between the computational resources.
Such a mirrored programming paradigm allows new
scheduling and allocation techniques to be used in HLL
compilers. TTA concept supports heterogeneous, even
multi-operand FUs without restrictions. MOVE frame-
work proposed in [8] is a design environment based on
TTA approach. MOVE framework provides a tool assisted
architecture exploration; the designer needs only to choose
an architecture configuration fulfilling the requirements. A
retargetable HLL compiler is used to compile the applica-
tion onto chosen architecture.

In this paper, the tools of the MOVE framework are used
to design an application-specific instruction-set processor
for a 32-point discrete cosine transform (DCT). The pro-
cessor design is taken down to the floorplan level.

II. TRANSPORT TRIGGERED ARCHITECTURE

The bypass complexity of VLIW can be reduced by
making the bypass registers visible at architectural level.
This way the spilling of bypass values into register file
(RF) is made under the program control. The bypass com-
plexity can also be reduced by reducing the number of read
and write connections and, therefore, the number of by-
pass buses. This implies that, besides the operations, also
the operand transfers (transports) need to be scheduled at
compile-time. Thus, the bypass transports become visible
at the architectural level and operations can be hidden. In
this model, the data transports trigger the operations im-
plicitly. In principle, the traditional operation triggered
programming paradigm is mirrored, hence the name trans-
port triggered architecture [7]. In the TTA programming
model, program specifies only the data transports to be
performed by the interconnection network. Therefore,
only one type of operation is supported: move operation,
which performs a data transport from a source to a destin-
ation. The number of move operations per instruction is
equal to the number of simultaneous transports supported
by the interconnection network.

A TTA processor consists of a set of functional units and
register files containing general-purpose registers. These
units are connected by an interconnection network con-
sisting of buses as illustrated in Fig. 1. Connections to
buses are established through input and output sockets; an
input socket contains multiplexers feeding operands from
the buses into the FUs and an output socket contains de-
multiplexers placing the FU results into the correct bus.
The TTA concept provides flexibility in form of modu-
larity; functional units with standard interface are used
as basic building blocks. Therefore, the architecture can
be tailored with special function units without a need to
change the transport capacity.

III. MOVE FRAMEWORK

MOVE framework is a design environment containing a
set of software tools for designing ASIPs [8]. It provides a
semi-automatic design process shortening the design-time.
MOVE framework exploits the scalability, flexibility, and
simplicity of TTA. The design flow consists of three prin-
cipal components as illustrated in Fig. 2.

The design space explorer searches for a processor con-
figuration, which yields the best cost/performance ratio
for a given application. Hardware resources of the pro-
cessor, such as the number and type of buses, FUs and
RFs and their connectivity, are described in an architec-
ture description file. The design space explorer optimizes
first the hardware resources. An architecture configura-
tion fulfilling the cost and performance requirements is
then chosen by the designer for connectivity optimization
where unnecessary connections are removed.

FU

FU

RFFU RF FU

FU LSUFU Memory

Fig. 1. Principal block diagram of TTA. FU: Function unit. RF: Register
file. LSU: Load-store unit. Dots represent socket connections.

The hardware subsystem is responsible for generating
the processor floorplan. A processor generator is first used
to generate a structural hardware description (VHDL) of
the optimized processor configuration obtained from the
design space explorer. Commercial tools can then be used
to perform logic synthesis, placement, and routing to ob-
tain the layout of the processor.

The software subsystem generates instruction-level par-
allel code for the chosen processor configuration. It con-
sist of front-end, back-end, and simulator. The front-end,
based on GNU gcc, is used to compile the HLL code into
sequential code. The back-end schedules the data trans-
ports of the sequential code to the available resources de-
scribed in the architecture configuration file and generates
the parallel code. The simulator provides also statistics,
e.g., cycle count, instruction count, and hardware resource
utilization.

IV. ASIP FOR 32-POINT DCT

The MOVE framework was used to generate an
application-specific processor for a 32-point DCT used in
an audio coding application. First, the fast algorithm for
DCT proposed in [9] was described in C language. The
created C code contains five functions, one for each pro-
cessing column of the signal flow graph of the algorithm.
Each function is written totally unrolled, i.e., no iterations
are used. This alleviates detection and exploitation of the
inherent parallelism of the algorithm. On the other hand,
such a code results in larger program code.

In DSP realizations, fractional number representation
is often used where the number range is normalized into
range [−1,1), i.e., the fixed-point representation contains
a single digit for sign followed by the binary point and
digits for fractions. In our case, 16-bit data words were
used; one bit for sign and 15 bits for magnitude. Due to
the fact that ANSI C does not contain predefined data type
for such a representation, the normalization needed in mul-
tiplications was included into the C description as a shift
of 15 bits to the left as follows

int a,b,c;
c = (a*b) >> 15;

Architecture
Description

Design
Space

Explorer

statisticsstatistics Hardware
Subsystem

Software
Subsystem

Parallel
Object Code

Processor
Layout

Application
in HLL

Technology Description
& Cell Library

Fig. 2. Principal design flow in MOVE framework.

A. Design Space Exploration

The design space explorer was used to find the optimal
architecture configuration for the DCT application. The
resource optimization was performed to obtain a set of
configurations that are local optimal solutions for a cer-
tain cost or performance. A configuration with the best
compromize between the cost and performance was selec-
ted. The chosen architecture configuration had three load-
store units since the used DCT algorithm uses memory fre-
quently to store and load intermediate results during the
execution. The current MOVE tools assume that a single
memory space is used, thus each load-store unit requires a
port to the memory; in our case, a three-ported memory
would be required. However, the libraries of the tar-
get ASIC technology provided only dual-ported memories
and, therefore, the third load-store unit was omitted. This
resulted in 26% increase in the number of clock cycles.
After the hardware resources were fixed, the connectivity
optimization was performed to remove unnecessary con-
nections to reduce area and bus capacitance. An archi-
tecture configuration, which had the minimal number of
connections and best performance was selected as the con-
figuration to be implemented.

The estimations on area and execution time provided by
the design space explorer are based on cost models de-
veloped for a 0.7 µm ASIC technology. Since our tar-
get technology was a 0.13 µm technology, the architec-
ture configuration obtained from the design space explorer
may not be the best one. Due to the lack of cost mod-
els for the target technology, we had to compare the per-
formance of different architecture configurations sugges-
ted by the design space explorer in terms of clock cycles
rather than the execution time, although the optimization
is based on execution time. Because of this, the selected
architecture configuration does not have the most optimal
resources. In order to obtain the most optimal architecture
configuration, the cost models would have to be updated

to correspond to the 0.13 µm technology. However, the
architecture configuration obtained from the design space
exlorer is feasible for our case study.

The selected architecture configuration depicted in
Fig. 3 has nine 32-bit buses, two load-store units, three
ALUs, one multiplier, one shifter, and 32 registers. An I/O
unit shown in Fig. 3 was added manually in later design
phases. The ALUs perform only two arithmetic opera-
tions: addition or subtraction. The shifter is needed to
scale the signal levels during the computations for avoid-
ing overflow and to normalize the result of multiplication.
The register file configuration had to be chosen manually
since the design space explorer cannot modify the intern-
als of the register file. Few experiments were made to find
a reasonable configuration for the register file and finally
32 registers were used. In general, a TTA processor also
contains compare units but, in this case, the code was un-
rolled, thus no compare operations were needed. In this
sense, the code contains only data flow.

B. Processor Generation

After the processor configuration was found, the struc-
ture of the processor can be defined. For this purpose
MOVE framework contains a processor generator, which
produces a VHDL description of the processor. However,
the MOVE processor generator creates architectures with
unnecessary features, which are not needed in our design
case, e.g., cache and exception support. In addition, cur-
rently the MOVE compiler and processor generator con-
tain some incompatibilities, which require manual modi-
fications to the obtained VHDL code.

In order to avoid manual design phases, we developed
a simple processor generator, which supports only the ba-
sic features and creates a processor, which is compatible
with the machine code generated by the MOVE compiler.
The developed generator creates VHDL description based
on the information obtained from the design space ex-
plorer. The generator simply combines manually written
leaf cells, such as shifters or multipliers, produces the ne-
cessary control logic and wires everything together at the
top level. The generator creates also the scripts for logic
synthesis, a testbench, and test vectors for RTL verifica-
tion. The test vectors realize the entire application.

The new processor generator was run and the RTL-
verification was performed using the automatically created
testbench and test vectors. The processor was synthes-
ized with the automatically generated synthesis script onto
a 0.13 µm CMOS standard cell technology with 5 levels
of metal (copper wires). Starting point for the back-end
flow was hierarchical Verilog netlist from the synthesis
tool with about 18,000 standard cells and 7 macro cells
(memories), one for the data memory and the rest six for
the instruction memory. Total gate count of the standard
cell area was about 56,000 and of the macro cells 34,000.

LSU

ALU

LSU

ALU ALU

SHFTMUL

I/O

RFs
8x4 int

1x1 bool

DMEM

Fig. 3. Optimized architecture configuration for 32-point DCT.

The obtained netlist, cell library, and hard macros were
imported to a back-end tool and floorplanning tasks were
performed. The area of the processor core was estimated
based on the number of standard cells in the design and
utilization limit of the technology. Core aspect ratio was
modified together with macro placement in order to op-
timize the macro placement and the shape of standard cell
area. After these, I/O placement and automatized power
routing estimation were executed.

Flat approach was used for placement and routing. Con-
nectivity based placement was used without timing con-
straints and without any additional physical constraints
such as critical net weighting, cell grouping, placement
blockages, or routing blockages. The memory blocks have
been implemented with only four metal layers, thus one
metal layer could be used for routing over the macros.
Some placement and routing iterations, including core size
modifications, were executed in order to find an optimal
routable area for standard cells. Floorplan of the design is
illustrated in Fig. 4. Macro cells forming the instruction
memory are placed on the left and right edges of the core.
Data memory is placed at the bottom and I/O on top of the
core. The size of the data memory is 512 bytes, and the
size of the instruction memory is 24576 bytes.

TABLE I

STATISTICS OF 32-POINT DCT PROCESSOR DESIGN.

Core size (width x height) [µm] 850.00 x 928.20
Chip size (width x height) [µm] 920.55 x 998.75

Clock cycles 538
Data transports 2722

Instruction width [bits] 180
Instructions 559

Code size [bytes] 12578
Code efficiency [%] 54.1

 DATA
MEMORY

I
N
S
T
R
U
C
T
I
O
N

M
E
M
O
R
Y

I
N
S
T
R
U
C
T
I
O
N

M
E
M
O
R
Y

I/O

Fig. 4. Floorplan of ASIP designed for 32-point DCT application.

Acceptable level of routing congestion was achieved
with the core and chip dimensions described in Table I
and with standard cell utilization of 78%. Clock tree syn-
thesis was done in order to distribute the clock signal to
flip-flops with minimum skew. The design has only one
clock domain with total number of 140 clock distribution
buffers and the number of loads is 3283. Estimated max-
imum skew value is 0.047 ns after the clock tree synthesis
and 0.032 ns after pre-layout gate sizing. The maximum
clock frequency limited by switching for this clock domain
is about 700 MHz. These numbers are pre-layout estima-
tions without exact statistics from static timing analysis or
gate level simulations.

In this design case, only the first phase of the routing
tasks was performed; neither physical violation checks nor
final routing optimization were performed. However, the
first routing phase results in quite accurate estimations;
in general, for simple floorplans without special physical
constraints, the difference is about 5% compared to final
post layout results. After the back-end flow, the design was
verified at gate-level with clock frequency of 250 MHz us-
ing back-annotated timing information from the back-end
tool. Clock frequency of 250MHz was chosen in the logic
synthesis phase. The attainable clock frequency is limited
by the memory access time; 350 MHz could have been
achieved with the used technology.

C. Simulation

The MOVE software subsystem was used to compile
the DCT application into an executable binary code for

S(9)G(2) D(6) S(9)G(2) D(6) S(9)G(2) D(6) S(9)G(2) D(5) S(9)G(2) D(5) S(9)G(2) D(5) S(9)G(2) D(6) S(9)G(2) D(5) S(9)G(2) D(5) LI(32)

BUS#1 BUS#2 BUS#3 BUS#4 BUS#5 BUS#6 BUS#7 BUS#8BUS#0

Fig. 5. Structure of instruction word. G: Guard field. S: Source Field. D: Destination field. LI: Long immediate field. (x): x-bit field.

the generated processor architecture. The MOVE instruc-
tion set simulator was then run to obtain statistics of the
program execution and code size. The obtained results
are shown in Table I. The code size is fairly large due to
the long instruction word having dedicated slots to define
data transports on each bus as depicted in Fig. 5. Each
move slot contains three fields. The guard field specifies
the guard value that defines if the data transport on the
bus is executed or squashed. The source field specifies the
address of a socket that writes data on the bus. The destin-
ation field specifies the address of a socket that reads the
data from the bus. In addition to move slots, instruction
word contains also a dedicated field used to specify a long
immediate value. In addition to long instruction word, the
code efficiency shows that approximately 46% of the data
transport are empty transports (NOPs) increasing the num-
ber of instructions and thus the code size. A method to
improve code density of processors designed with MOVE
framework by applying entropy encoding to compress in-
structions has been discussed in [10]. Evaluations show
code compression ratios of about 0.6.

The simulator provided also information about the hard-
ware resource utilization. The utilizations of the the two
load-store units are 82% and 41% indicating that the three
load-store units, as suggested by the design space explorer,
would have been a better configuration than having only
two of them. The utilizations of the ALUs are 48%, 37%,
and 12% indicating that three ALUs are sufficient.

The utilization of the shifter is quite high (27%) imply-
ing that the shift capability should be incorporated into the
multiplier in this kind of a DSP application. However, the
shifter would still be needed to perform the scaling of in-
termediate signal levels for avoiding overflows. The util-
ization of multiplier is fairly low (15%) due to the small
number of multiplications in the used DCT algorithm.

V. CONCLUSIONS

In this paper, design of an application-specific
instruction-set processor for a 32-point discrete cosine
transform using the tools from the MOVE framework was
described. The processor design was taken down to the
floorplan level and estimations on area and timing were
obtained. Due to compatibility problems of the MOVE
tools, the generated design is not the most optimal solution
for the DCT application. A guard unit controlling the con-
ditional execution was included in the design although it is
not used since the application was written totally unrolled,
i.e., no conditional structures were used. Removal of the

guard unit would have required changes in the hardware
subsystem. Since the guards in this design case are al-
ways true, the guard fields could have been removed from
the MOVE instruction. However, this would have caused
modifications to the MOVE compiler. The multiplier of
the designed processor should include shifter required to
normalize the results of multiplication. This would have
made the data buses available for other data transports.
Furthermore, since the 32-bit results from the multiplier
would no longer be transported to the shifter, the bus width
could have been reduced.

As discussed above, to obtain a more optimal processor
design for the application, the tools of the MOVE frame-
work would have had to be modified manually. Since our
focus was to evaluate the current status of the MOVE tools
to design an application-specific processor such modifica-
tions were not done.

REFERENCES
[1] J. M. Rabaey, W. Gass, R. Brodersen, T. Nishitani, and T. Chen,

“VLSI design and implementation fuels the signal-processing re-
volution,” IEEE Signal Processing Mag., vol. 15, no. 1, pp. 22–37,
Jan. 1998.

[2] J. Kang, J. Lee, and W. Sung, “A compiler-friendly RISC-based
digital signal processor synthesis and performance evaluation,”
Journal of VLSI Signal Processing, vol. 27, no. 3, pp. 297–312,
2001.

[3] J-H. Yang, B-W. Kim, S-J. Nam, Y-S. Kwon, D-H. Lee, J-Y. Lee,
C-S. Hwang, Y-H. Lee, S-H. Hwang, I-C. Park, and C-M Kyung,
“MetaCore: an application-specific programmable DSP develop-
ment system,” IEEE Trans. VLSI Syst., vol. 8, no. 2, pp. 173–183,
2000.

[4] A. Hoffmann, T. Kogel, A. Nohl, G. Braun, O. Schliebusch,
O. Wahlen, A. Wieferink, and H. Meyr, “A novel methodology
for the design of application-specific instruction-set processors
(ASIPs) using a machine description language,” IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems, vol.
20, no. 11, pp. 1338–1354, 2001.

[5] J. T. J. van Eijndhoven, F. W. Sijstermans, K. A. Vissers, E. J. D.
Pol, M. I. A. Tromp, P. Struik, R. H. J. Bloks, P. van der Wolf, A. D.
Pimentel, and H. P. E. Vranken, “TriMedia CPU64 architecture,” in
Proc. IEEE Int. Conf. Computer Design, Austin, TX, U.S.A., Oct.
10–13 1999, pp. 586–592.

[6] R. P. Colwell, R. P. Nix, J. J. O’Connel, D. B. Papworth, and P. K.
Rodman, “A VLIW architecture for a trace scheduling compiler,”
IEEE Trans. Comput., vol. 37, no. 8, pp. 967–679, Aug. 1988.

[7] H. Corporaal, Microprocessor Architectures: From VLIW to TTA,
John Wiley & Sons, Chichester, UK, 1997.

[8] H. Corporaal and M. Arnold, “Using transport triggered architec-
tures for embedded processor design,” Integrated Computer-Aided
Engineering, vol. 5, no. 1, pp. 19–38, 1998.

[9] J. Takala, D. Akopian, J. Astola, and J. Saarinen, “Constant geo-
metry algorithm for discrete cosine transform,” IEEE Trans. Signal
Processing, vol. 48, no. 6, pp. 1840–1843, June 2000.

[10] J. Heikkinen, J. Takala, and J. Sertamo, “Code compression on
transport triggered architectures,” accepted to Int. Workshop on
System-on-Chip for Real-Time Applications, Banff, Canada, July
6–7 2002.

