
A RECONFIGURABLE DATA-FLOW ARCHITECTURE FOR A CLASS OF IMAGE P R O C E S S B
APPLICATIONS

A.Sinha, Member ZEEE, S.Neogi and KMaiti
R & D Center, Himachal Futuristic Communication Ltd.,

286, Udyog Vihar, Gurgaon -122016, INDIA
amitabha-sinha@ieee.org

Abstract ---This paper aims to device an
architecture which uses capability of asynchronous
concurrency of the data flow architecture as well as
spatial parallelism of SIMD machines for a class of
image processing applications using reconfigurable
processing elements (RPEs). Overall processing
speed is enhanced by a) concurrent functioning of
the RPEs and b) replacing software execution of
signal processing functions by hardware approach
using FPGAs as RPEs. Thus, a hybrid architecture,
which functions as a data flow machine at a
functional level and exploits the capability of
handling spatial paraIleIism by incorporating a
modified SIMD concepts is presented.

Zndex terms ---Control Unit (Cv), Signal Processing
Instructions (SPIs), Processing Elements (PES), Bit
stream memory module (BSMM), Interconnection
Network (ICN).

1. INTRODUCTION
Intensive and complex computations are

required for image processing algorithms on enormous
amount of data. The real time processing requirement
of this huge amount data will be far below the
processing speed of the fastest available uni-processor
system. It is observed that a large class of image
processing algorithms exhibit spatial parallelism and is
most suitable for SIMD machines. Imaging
Architecture based on SIMD concept has been reported
in [1][2][3] and a re-configurable SIMD architecture
has been reported in [4]. SIMD machines employ a
large number of tiny PES working concurrently under
the control of a CU. For a given algorithm, the CU will
have to broadcast the simple machine instructions in
lock-step fashion corresponding to a complex imaging
instruction to all the PES. In this process CU efficiency
goes down to a large extent. Apart from that, the
efficiency of these machines is limited by 1) Capability
of the PES, 2) Data communication between the PES,
3) Capability of handling tree-structured algorithms.

High-speed requirements of digital image
processing algorithms can be achieved by exploiting
the spatial parallelism inherent in the algorithms and
using a no of dedicated hardware to execute the
specific functions. However incorporating all the
functions in a single processing element will lead to
complex, inefficient and costly solution. This problem
can be handled by introducing dynamically

reconfigurable [5] [6] parallel architecture where PES
can be reconfigured on the fly depending on the Signal
Processing Instructions (SPIs) issued to by the CU.

Data flow architectures [14][151 offers a possible
way of exploiting concurrency of computations on a
large scale. Highly concurrent computation in Data-
flow concept is achieved by data-driven approach. In
this model instruction firing is asynchronous [7][8][9].
These properties are especially suitable for Image
Processing computations [lo][1 11.

For a given imaging application, SIMD technique
alone cannot handle the whole algorithm because an
algorithm can be viewed as a collection of functional
units working asynchronously and concurrently.
However, each functional unit exhibits SIMD kind of
spatial parallelism. Hence, in order to achieve
substantial throughput gain, the approach should be to
devise a technique such that there should be two fold
concurrency: asynchronous concurrency at the top
level and spatial parallelism within the functional
units. Keeping this in view, this paper present a new
hybrid architecture, which uses modified SIMD
concepts as the processing units of the Data-flow
machine at a functional level.

2. PROPOSED ARCHITECTURE
Since the proposed architecture (fig. 1) i s meant

for handling image-processing algorithms, it should be
capable of handling both scalar and vector instructions
efficiently.

Fct& lmlt

-
FIgmr 1: A" d the Hybrid DF-SIMD Machine

Scalar instructions are simple arithmetic (ADD,
SUB), logical operators (AND, OR, etc.), relational
(GREATER-THAN, LESS-THAN, etc.), decision
making (SELECT, MERGE) etc.. Vector instructions
include the imaging functions like FFI', SMOOTH,

460

Authorized licensed use limited to: Vilnius University. Downloaded on December 22,2024 at 20:18:30 UTC from IEEE Xplore. Restrictions apply.

mailto:amitabha-sinha@ieee.org

EDGE-DETECTION, COSINE TRANSFORM,
IMAGE RESTORATION etc.. Since these functions
exhibit spatial parallelism, the basic processing unit of
the proposed architecture is based on SIMD machines.

The architecture consists of five blocks: 1)
Activity Template Storage Unit 2) Instruction
Queue Unit 3) Fetch Unit 4) Processing Unit and 5)
Update Control Unit.

SI OpCode Dednation Pointertodata
v Address or Data1

Data2
7 ..

UPDATE CONTROL UNIT (UCV): This unit takes
in the data tokens from the Processing unit (PU) and
store then in its input pool and then passes them to
their destination instructions in the ATSU depending
on their availability. It also tests whether all the
operands and acknowledge packets required to activate
the destination instruction has been received and, if so,
enters the instruction address into the Instruction
Queue.

3

INSTRUCTION QUEUE UNIT (IQU): This unit
stores the address of the active activity template. It is a
FlFO buffer store. During execution the number of
entries in the instruction queue measures the degree of
concurrency present in the program.

Jnrertrmndnn Nehmrk (IC?.?) DYA

-

FETCH UNIT @U): This unit fetches templates from
ATSU depending on the address in IQU and sends a
complete operation packet to PU by placing it into the
Operation Packet Queue (OPQ).

PROCESSING UNIT: This unit (fig. 2) consists of
“OPQ’, “CU”, “vector processing unit (VPU)” and
“scalar processing unit (SPU)”. It generates one result
packet for each destination field as specified by the
operation packet.

UN;

i FETCH
UNIT
I

F@re 2: meersing Unit

VECTOR PROCESSING UNIT: This unit (fig. 3)
consists of a ‘ N numbers of RPEs, Bitstream Memory
Decoder/Controller (BMDC), BSMM and an
interconnection network (ICN).

110

cu FROM
PES FrCm

Fetch
h i t

46 I

Authorized licensed use limited to: Vilnius University. Downloaded on December 22,2024 at 20:18:30 UTC from IEEE Xplore. Restrictions apply.

Control Unit: This unit performs the following
operations in sequence.
a) Read operation templates from OPQ, b) Detect
instruction type (Scalar, Vector), c) Assign
instruction (template) to the SPU or to the VPU
depending on the type and d) Send result to UCU.

i BWM lNTERFACE

P i s 5 Ortboga~slMBaoty Intsconnetirm Newark

3.MAPPING AN EDGE-DETECTION
ALGORITHM TO DF-SIMD ARCHITECTURE

One of the commonly employed edge-detection
gradient is the Roberts gradient 131. It is generated by
Roberts musks

The Roberts gradient is given by

At each pixel (i, j), assuming that all relevant gray
values are defined, the outputs of two Roberts
difference operators are

[FILTER (f; Rl)](i,j) = f(i,j) - f(i-l,j+l)
[FILTER (f; R2)](i,j) = f(i,j+l) - f(i-lj) and .

Once the filtering has been accomplished,
MAXNORM is applied to the resulting gradient vector
to get ROBMAG. The figb describes the Data-Flow
approach of ROBMAG.

4. TIME ANALYSIS BETWEEN THE
PROPOSED AND DSP BASED

ARCHITECTURE: .

The motivating factor behind the design of this
architecture has been an effort to reduce the execution
time of a given complex digital signal / image
processing functions, to meet real time requirements.

The time T t o t d - m ~ ~ required to execute one
complex instruction on the proposed architecture using
FPGAs is given as follows:

T i o l a l - ~ ~ ~ ~ = tenable + bonfigation + kxecution +tco"unication

t enable = time required by CU from recleiving the
Operation packet to enabling the configuration
process.
t configatioll = time for configuring the WEs. By using
the property of partial reconfigurability of the FPGAs
this time can be made equal to zero.
t execution = time required for actual execution of the

function (propagation delay time + touting delay time)
t c o m i c a t i o n =time required for inter-processor
communication.

The corresponding time required in DSP processor
based architecture is as follows:

T ~ ~ ~ ~ I - D s P = tinstmction issue + hecoding + texecution+t communication

t instruction issue = time required to issue an SPI .
t decoding = time required for decoding the instruction.
t execution = time required for executing the high level
instruction

462

Authorized licensed use limited to: Vilnius University. Downloaded on December 22,2024 at 20:18:30 UTC from IEEE Xplore. Restrictions apply.

t comicat ion = time required for processor
communication

Of all these times, the most contributing factor is
the execution time of the SPIs.

Total time required by DSP based architecture to
perform the above-mentioned ROBMAG Image
Processing algorithm is,
T~TAL-DsP-RoBMAG = 3* t TRANS-DW+4* t MINUS-DSP + 2*t ADD-DSP

+ MAX-DSP

Total time required by the proposed architecture to
perform the same ROBMAG algorithm is,
T ~ T ~ - ~ ~ R o B h % 4 G = 3* t “ANS-DFStMD+4* MINUS-DFSWD +

2*t ADD- DpSlMD + t MAX- DFSIMD

If there are ’ N number of RPEs in the SIMD machine
the execution time of the SPIs (exploiting the spatial
parallelism)

Where K c: N due to the interprocess communication,
but K > 1.

This will be the case of all the basic SPIs required
to execute the algorithm, but the factor ‘ K will vary
depending on the SPI.
SO, T~TL-DSP-ROBMAG >> T~TAL-WROBMAG

Thus the execution time of a DSP processor will
be much more than the execution time of the algorithm
in the proposed DF based architecture.

t ~RANS-DFSIMD- (t ~ A N S - D S P) 1 K

5. CONCLUSION
The objective is to derive a hybrid Data Flow

architecture to meet the real-time requirements for a
class of image processing applications. The philosophy
behind the performance enhancement is based on
introducing “dynamically reconfigurable computing ”
within the SIMD structure such that the execution of
the signal processing functions can be performed at the
speed of the hardware without losing the flexibility of
the software. The architecture also overlaps the CU
and RPE operation, thus reducing the CU idle time
made possible by the partial reconfigurable property of
FPGAs. Hence the architecture offers 1) Flexibility 2)
Scalability 3) Flexible topology 4) PE Efficiency 5)
Scheduling and synchronization at the hardware level
6) Efficient Utilization of Processing unit.

As number of RPEs increase, large number of
image blocks can be compressed concurrently. Various
performance studies on speedup factor,
communication overhead based on Block size Vs
Number of RPEs, size of IQU and OPQ, are to be
investigated. Here we have adapted Static Data Flow
architecture, but Dynamic Data Flow architectures
have also to be explored.

6. REFERENCES
[l] S.Y.Kung , “VLSI Array Processor “ ,Prentice Hall
1988

[2] H.J.Siegal, et al, “PASM: A partitionable
SIMDIMIMD system for image processing and pattern
recognition”,IEEE Trans. Computer., Vol. C30, no. 12,

[3] A.Sinha, et a1 P.C.Jain, V.Mitra, “Asynchronous
SIMD - A New Architecture For A Class Of Image
Processing Applications”, proc. Fifth National Conf.
On Communication, pp. 287-294,IIT Kharagpur, India.
1999
[4] Hungwen Li and Quentin F.Stout, ‘Reconfigurable
SIMD Massively parallel Computers”,Proc.

[5] John Villasenor and William H. Mangione-Smith,
“Configurable Computing”, Scientific American
Article, June 1997.
[6] John Villasenor and Brad Hutchings, “The
Hexibility of Configurable Computing”, IEEE Signal
Processing Magazine,l998,pp 67-83
171 J.B.Dennis, “Dataflow Supercomputers,”
Computer, pp48-56, Nov., 1980.
[8] Shuichi Sakai, Yoshinori Yamaguchi, Kei Hiraki,
Yuetsu Kodama, and Toshitsugu Yuba. “An
Architecture of a Dataflow Single Chip Processor,” In
Proc. 16th Annual Int’l Symposium on Computer
Architecture, pp46-53. ACM, 1989
[9] Jack B Dennis, MIT “Stream Data types for signal
processing,” in Advanced topics in Dataflow
Computing and Multithreading(Ga0, Bic, Gaudiot
eds.), EEE Computer Society Press,1995.
[101 P.Netezki, “Exploiting Data Parallelism in Signal
Processing on a Dataflow machine,” ACM Annual Int’l
Symposium on Computer Architecture pp. 262-272,
1989.
1111 Ben Lee and A.R. Hurson. “Dataflow
architectures and multithreading,” IEEE Computer,
pages 27-38, Aug 1994.
[12] A.N. Choudhary and J.H. Patel, “A Parallel
Process\-ing Architecture for an Integrated Vision
System,” I988 International Conference on Parallel
Processing, August 1988, pp. 383-387.
[13] Edward R. Dougherty & Charles R. Giardina,
“Matrix Structured Image Processing”, Prentice Hall.
1987
[14] K. Hwang & F.A. Briggs,”Computer Architecture
and Parallel Processing”, McGraw-Hill, Singapore,
1985
1151 V.M.Bove and J.A.Watlington, “Cheops: A
reconfigurable Data-flow system for video
processing,”
IEEE Transactions on Circuits and Systems for Video
Technology, 5, Apr. 1995, pp. 140-149.

pp. 934-947, D a 1981

IEEE,Vol.79, NO.4, April 1991, pp. 429-443.

463

Authorized licensed use limited to: Vilnius University. Downloaded on December 22,2024 at 20:18:30 UTC from IEEE Xplore. Restrictions apply.

