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ABSTRACT
Java is slowly being accepted as a language and platform for em-
bedded devices. However, the memory requirements of the Java
library and runtime are still troublesome. A Java system is con-
sidered small when it requires less than 1 MB, and within the em-
bedded domain small microcontollers with a few KB on-chip Flash
memory and even less on-chip RAM are very common. For such
small devices Java is a clearly challenging. In this paper we present
the combination of the Java compiler Muvium for microcontrollers
with the tiny soft-core Leros for an FPGA.

To the best of our knowledge, the presented embedded Java sys-
tem is the smallest Java system available. The Leros processor con-
sumes less than 5% of the logic cells of the smallest FPGA from
Altera and the Muvium compiler produces a JVM, including the
Java application, that can execute in a few KB ROM and less than
1 KB RAM. The Leros processor is available in open-source and
the Leros port of Muvium is freely available.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems; D.3.4 [Programming Languages]:
Processors—Compilers

1. INTRODUCTION
There is a clear trend in embedded computing that divides com-

puting devices into two basic categories, Linux enabled and sub-
Linux systems. The range and cost point of Linux enabled devices
is growing very quickly and for those devices Java J2SE running
on Linux is a compelling option. For sub-Linux systems, appli-
cation specific microcontroller systems, there are fewer choices
for running Java and the requirements of real world applications
change quite substantially. To compete effectively in this segment
a Java compiler for embedded microcontrollers must handle ex-
tremely limited resources, work without an operating system, inter-
face directly with the real-world, and compete effectively with the
C language. Performance and code-density are perhaps the most
critical factors for an embedded processor. Due to its interpretive

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JTRES 2011 September 26-28, 2011, York, UK
Copyright 2011 ACM 978-1-4503-0731-4I/11/09 ...$10.00.

nature the performance of Java has always been questioned. Main-
stream JVMs employ just-in-time technologies to address this. For
embedded systems, just-in-time compiling is hardly possible due to
the memory consumption of the compiler. However, since the ap-
plications we target are dedicated static applications, ahead-of-time
compilation is the approach to reduce resource consumption.

This ahead-of-time compilation approach is used by Muvium to
target Java to highly resource constrained embedded devices. To
enable Java for small microcontrollers we impose several restric-
tions to Java: only a small subset of the Java library (JDK) is avail-
able and in the default configuration of Muvium, Java integers are
represented as 16-bit words.

In this paper we present a minimal embedded Java system con-
sisting of the tiny microcontroller Leros [7] and the ahead-of-time
compiler Muvium [2], which is optimized for processors with min-
imal memory resources. To the best of our knowledge, this is the
smallest Java system available today — a first step toward bringing
Java into very small systems and building up Java Dust.

2. RELATED WORK
The Squawk VM [8] is a platform for wireless sensors, targeting

the embedded processor ARM9. Squawk is mostly written in Java
and runs without an OS. Compared to Leros/Muvium, Squawk still
needs a considerable amount of Flash and RAM. A stripped down
Squawk runtime fits into 256 KB Flash.1 Another approach for
small embedded Java is the CACAO JVM [4], which has also been
optimized for a small footprint. It is possible to run the CACAO JIT
compiler for the MIPS target and a simple Java application within
1 MB memory [1]. This footprint figure for the well performing
CACAO JIT is impressive, but targets a different class of embedded
devices than our approach.

SimpleRTJ2 is a small JVM interpreter, targeting embedded pro-
cessors. SimpleRTJ requires 18-24 KB of ROM. However, it inter-
prets Java bytecodes and it can easily take several thousand cycles
to execute e.g. a field operation on a 16-bit controller.

KESO is another small JVM targeting microcontrollers [9].
KESO targets the automotive domain with a backend for OS-
EK/VDX. It is an ahead-of-time compiler that takes bytecodes
as input, similar to Muvium. However, KESO generates C code
instead of directly assembler code. This gives the full range of
C based optimization, but the C compiler might miss some opti-
mization potential from lost knowledge of the original bytecode.
Muvium in contrast can optimize the stack layout, as it is given by
the bytecode, to the available resources in the microcontroller.

1Private communication with Rasmus U. Pedersen
2http://www.rtjcom.com/
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Figure 1: Two stage pipeline of Leros

Many small processors are available, which target FPGAs. We
pick two examples and point out the differences to our Leros
design. PicoBlaze is an 8-bit microcontroller optimized (and
restricted) for Xilinx FPGAs [10]. This optimization results in
restrictions such as maximal program size of 1024 instructions and
64 byte data memory. Compared to PicoBlaze, Leros has fewer
restrictions on program and data size, as it is a 16-bit processor.

The SpartanMC is a small microcontroller optimized for FPGA
technology [3]. The processor is a 16 register RISC architecture
with two operand instructions and is implemented in a three-stage
pipeline. Compared to the SpartanMC, Leros is further optimized
for FPGAs using fewer resources. Leros simplifies the access to
registers in on-chip memory by implementing an accumulator ar-
chitecture instead of a register architecture.

3. THE LEROS PROCESSOR
The Leros processor [7] is a microcontroller optimized for low-

cost field-programmable gate arrays (FPGAs). It is a 16-bit pro-
cessor intended for utility functions in an FPGA based System-on-
Chip (SoC) design. The design goals of Leros are a good balance
between the number of logic cells and on-chip memories, reason-
able performance, and a high maximum clock frequency.

The architecture, which follows from the design goals, is a
pipelined 16-bit accumulator processor with additional directly
addressable registers in an on-chip memory for local variables.
Only a single dedicated register (the accumulator) is connected to
the ALU output and provides one input to the ALU. To provide
fast data locations, similar to a register file, the first 256 words in
the on-chip data memory can be directly addressed for an ALU
operation. The on-chip data memory is shared for those registers
and general data. With an additional on-chip memory for the
instructions only two memory blocks3 are needed, and the pipeline
can execute one instruction per clock cycle.

The basic building blocks in current FPGAs are logic cells (LC),
on-chip memories, and DSP blocks. For a utility processor we are
interested in the optimal relation between logic cell and on-chip
memory consumption. On-chip memory in FPGAs is organized as
fixed-sized blocks with a configurable data and address width. To
optimize a tiny processor core we evaluated the relation of on-chip
memories to logic resources on current low-cost FPGAs.

3Very small programs can even be implemented using logic for the
instruction memory.

We have compared recent low-cost FPGA families from Altera
and Xilinx [7]. For medium size and large FPGAs of the Altera
Cyclone and Xilinx Spartan-6 series the relation between LCs and
memory blocks stays in the range of 200 to 400 LCs per memory
block independent of the device size. Therefore we conclude that
the sweet spot for a Leros in current FPGAs is around 300 LCs per
on-chip memory block.

Leros is named after the Greek island Leros,4 where it was de-
signed during an enjoyable vacation. Leros is available under open-
source from https://github.com/schoeberl/leros.

3.1 The Pipeline
Leros is implemented in a two-stage pipeline with following vis-

ible architectural state: the program counter (PC), the accumulator
register (A), the instruction memory (IM), and the data memory
(DM). Figure 1 shows the pipeline of Leros (slightly simplified).
The DM is shown twice as it is read in one pipeline stage and writ-
ten in a different one. Register A is the accumulator and PC the
program counter.

In the first pipeline stage, instructions are fetched from the on-
chip IM and decoded. Decoding the few instructions is simple,
so an additional decode stage is not needed. In the second stage,
operands are read from the DM and the ALU operation is per-
formed. The result is placed in the accumulator. Similar to the
first stage, the 16-bit ALU operation is fast enough to perform it in
the same stage as reading from DM.

The read and write address of the DM is either a constant from
the instruction (for the on-chip registers) or an indirection via the
DM plus an offset (for loads and stores). The write data for the
DM is either A for store instructions or the PC for a jump-and-link
instruction that saves the PC in a register.

As the data memory is shared for registers and general data, load
and stores are implemented by two instructions. With the first in-
struction the address for the register is sent to the DM. The follow-
ing instruction uses the value of the DM (the register content) and
adds an offset, which is part of that instruction, to form the effective
address. The data word to be written is provided by A; the result of
a load is stored into A.

For on-chip memories with independent read and write ports the
question arises what happens on a concurrent write to and read from
the same address in the same cycle. There are three options: (1)
read the newly written value, (2) read the old value, or (3) unde-
fined. For option (2) and (3) a read following a write to the same

4http://www.lerosisland.com/
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register, as shown in the following code, will not deliver the ex-
pected result.

store r1
load r1 // old value of r1 or undefined

However, for an accumulator machine this behavior is not a big
issue. The last value written to the DM is still in register A and can
be reused when needed by the next instruction.

3.2 I/O Interface
The interface to I/O components is via an 8-bit I/O address, 16-

bit input and output data, a read, and a write signal. This inter-
face allows easy attachment of I/O components. Simple I/O ports,
such as switches and LEDS, can be attached with a few lines of
VHDL code. More complex components, such as serial interfaces,
are available in open source (e.g., at http://opencores.org/).
For System.out and System.in we have adapted the UART from
the JOP project [6] for the simplified I/O interface.

3.3 Instruction Set
Leros is a 16-bit architecture with 16-bit data and instructions.

In an accumulator design the addresses of one source operand and
the destination are implicit. Therefore, only one operand (address)
needs to be encoded in an instruction. Furthermore, this relaxed
instruction encoding allows for 8-bit immediate values in the in-
struction. Register naming convention is rn, where n is between 0
and 255.

The common ALU operations, such as addition and logic oper-
ations are supported with one operand from the register area (256
words) in the data memory or with an 8-bit immediate value. The
following code snippet shows adding the content of register r1 to
the accumulator and masking bit zero with an immediate and oper-
ation.

add r1
and 1

The data memory can be accessed via indirect loads and stores.
As described before, the sharing of the on-chip memory for the
data memory and the registers results in a 2 cycle operation for
a load or store. In the following example the content of register
r3 is loaded into the temporary address register (ar), and in the
following load instruction the memory at offset 1 from the address
register is loaded into to accumulator.

loadaddr r3
load (ar+1)

Conditional and unconditional branches use 8 bit relative off-
sets. Longer jump destinations, function calls, function returns,
and computed jumps are supported by a jump-and-link (jal) in-
struction. The jal instruction jumps to the address contained in
the accumulator and stores the PC into one of the 256 register.

4. COMPILING FOR LEROS
Muvium is a compiler that generates natively executable binaries

directly from Java class files. Muvium is also a linker, it generates
code from the source class files and links them with the Muvium
libraries. Executable binaries are minimized by only linking in li-
braries that are referenced and only those parts of the libraries that
are potentially used.

4.1 The Compilation Flow
Figure 2 shows the full compilation flow from the Java source

down to the configuration of the FPGA. The compilation flow is a
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Figure 2: Compilation flow for Java on Leros

little bit more complex, as the Java application is finally encoded
in VHDL files. That means that an application specific processor is
generated in order to consume just the needed logic resources.

The application in Java is compiled via a standard Java compiler
to Java class files. The class files are the input to the Muvium com-
piler, which generates a single assembler file. The Leros assem-
bler generates a memory definition (the instruction memory) in the
form of a VHDL file. The Leros VHDL sources and the instruction
memory are compiled by a FPGA synthesis tool (Altera Quartus or
Xilinx ISE) and generate the bitstream file that is used to configure
the FPGA.

4.2 Compilation Techniques
To produce a tight executable, several bytecode specific opti-

mizations are applied in the Muvium compiler. Muvium currently
targets two microcontrollers: the Microchip PIC and Leros.

Muvium employs static frames, that is to say frames reside
directly in the processor registers. To achieve this the stack
operations are unwound into a series of register operations
by predicting which slots are involved in any operation. For
example with an add operation, normally a JVM will perform
the operation push(pop() + pop()), Muvium will track the
current stack depth as N and perform the operation RegisterN-1
= RegisterN + RegisterN-1. To achieve this, devices with
large register sets are desirable. In Leros the first 256 words of
memory can be addressed as registers. Therefore, the whole frame,
including local variables, is managed statically.

For architectures where fewer registers are available, only the
first few slots, which are the most frequently used, are placed in
the register based stack frame. The other elements are placed into
the heap allocated stack frame and have a higher cost for read and
write operations.

http://opencores.org/


The static frame mechanism, although very efficient, also im-
plies some strict limitations on the number of local variables and
the size of the stack that can be manipulated. As Leros supports
256 words of memory accessible as registers, the maximum stack
frame per method is 256 words. We consider this large enough for
microcontroller applications.

Further optimization is applied by the construction of virtual
bytecodes from patterns detected in the bytecode stream. For ex-
ample

localVariableA = LocalVariableA + Constant

would produce the pattern

push(Constant), push (LocalVariableA),
add, pop and store LocalVariableA.

The compiler tracks the local variables statically in the frame and
would detect this pattern to produce

RegisterLocA = RegisterLocA + Constant

which can be 1 or 2 instructions, depending on the constant value
and the instruction set. Pattern matching is applied to a database to
replace sequences of bytecode with optimized ‘virtual’ bytecodes.
As new patterns are added, pre-post conditions can be applied dur-
ing testing to verify the equivalence of the virtual bytecode opera-
tor. This procedure is similar to peephole optimization.

4.3 Garbage Collector
Garbage collection is always a major challenge in embedded sys-

tems. Many do not support garbage collection at all. Muvium em-
ploys a reference counting mechanism with direct compiler sup-
port. The compiler attempts to minimize the number of times the
reference counters are incremented and decremented. While it is
well understood that reference counting does not solve the problem
in general, for example self references and cycles are not handled,
the benefit is that the major cost of computing the references dur-
ing a stop-the-world hierarchical mark-sweep is avoided. When the
GC is invoked the destructors of objects with zero reference count
are called, this can be recursive or early exit if sufficient memory
has been released. A compactor is then called to compact the heap.

The GC is interruptible and can be run in the background al-
though presently it is used when a new fails to allocate sufficient
memory or when System.gc() is called directly. Due to the effi-
ciency and the small amount of memory typical of a Muvium sys-
tem the GC invocation is usually not noticeable at all. Muvium
libraries specifically avoid the use of self referencing code to take
advantage of the performance of the integrated reference counter.
To handle the case of self references a special-case mark-sweep
type algorithm is used. In the case when all threads are in the root
entry frame and the System.gc() is manually invoked, a special
case mark sweep is applied to rebuild the reference counts. This
works by first resetting all reference counters to zero and then call-
ing the destructors of each of the thread objects which increment
rather than decrements reference counts as the destructor normally
does. This is then applied recursively to implement a mark-sweep
algorithm rebuilding reference counters. Then the normal gc() is
called. This is avoided wherever possible as it has the familiar per-
formance problems of a stop-the world mark-sweep.

4.4 Java Restrictions
For such a small system, as presented here, there are several re-

strictions on Java. First, with those tight memory constraints, a full
JDK is practically unusable. Muvium contains a small subset of the

Table 1: Comparison of Leros with PicoBlaze and SpartanMC
Logic Memory Fmax

Processor (LC) (blocks) (MHz)

Leros 188 1 115
PicoBlaze 177 1 117

SpartanMC 1271 3 50

JDK, similar to the CLDC version of J2ME. To support deeply em-
bedded controller applications Muvium offers an additional library
to interface I/O components.

Second, integer values are currently represented as 16-bit values.
This is a departure from the standard JVM, which is similar to the
original Java Card JVM. We plan to implement a compiler switch
to decide on the representation of integers as fast 16-bit types or as
JVM compliant 32-bit types.

These restrictions might be seen as a large departure from stan-
dard Java, and one could argue that C would be a better solution.
However, Java, even when restricted, is a safer language than C.
Furthermore, the Leros/Muvium combination is intended to build
virtual devices that can be attached to a main processor. That main
processor can be a Java processor, such as JOP [5]. In that case
Java can be used for the high-level and low-level programming of
an embedded system.

5. EVALUATION
We evaluated Muvium and Leros with small programs that are

typical for tiny microcontrolles and report the resource consump-
tion. We also compare the performance of Muvium for Leros and
for a PIC microcontroller.

5.1 Hardware Resources
We have implemented Leros on several different FPGA boards

with Altera and Xilinx FPGAs. The VHDL code of Leros is highly
portable. The only changes needed for a port are the pin definitions
for the board and a device specific PLL component.

Table 1 shows the resource utilization and maximum clock fre-
quency of Leros and two other small microcontrollers for a Spartan-
3E device. Leros is comparable in resource consumption and maxi-
mum clock frequency with PicoBlaze. However, Leros implements
a 16-bit data path and can execute an instruction in a single cy-
cle, whereas PicoBlaze is an 8-bit processor and needs 2 clock
cycles for each instruction. In contrast to Leros, SpartanMC im-
plements a register machine and needs therefore more resources.
The lower clock frequency of SpartanMC is due to the use of two
phase-shifted clocks for sub-dividing of two pipeline stages into
two phases.

For the evaluation with Java we have added a serial port (UART)
to Leros, which itself consumes 96 LCs. Leros with a simple “Hello
World” program in Java, which prints “Leros” and then echoes
characters received via the serial line, consumes 170 bytes of in-
struction memory. The resulting hardware is 435 logic cells and
one memory block for the RAM. Out of the 435 LCs, 104 are con-
sumed by the instruction ROM and 96 by the UART.

5.2 Example Application
The example application is based on the vision of executing

the Android Midget graphical framework on Leros. The Android
Midget graphical framework is a clean-room, light-weight Java
implementation of the widget, event based Android programming
model, including buttons, menus, text boxes, spinners, images,
checkboxes, and custom views. For the evaluation we have im-



Figure 3: The Midget simulation on the PC

plemented line drawing for using Leros as an embedded graphics
engine. As Leros is so tiny we intend to use a many-core version
for the inherently parallel application.

For the evaluation of our system we use an FPGA board with
a single Leros processor, connected via a serial line to a PC. The
PC simulates the Midget and the graphics display. The drawing
coordinates are sent via the UART from the PC to the FPGA board
and the resulting pixel coordinates are sent back to the PC. The
display simulation is shown in Figure 3.

The drawLine() method is used to illustrate the concept. This
routine is an essential part of the Android Midget framework and
16-bit integers are sufficient for this application. Since these condi-
tions are met by the Muvium Leros compiler, we are able to execute
this Java code in a Leros Java thread. This application needs 385
instructions (770 bytes) on Leros. For reference, the source of the
line drawing routine is available in the repository of Leros.

5.3 Performance
For performance evaluation we have hardcoded the drawing co-

ordinates in the function and executed it on Leros and on a cycle-
accurate simulation of a Microchip PIC.5 This PIC microcontroller
is an 8-bit processor and therefore will be less efficient than Leros.

With an interpreting JVM we measured that the drawLine()
method executes 728 bytecodes. Table 2 shows the size of the in-
struction memory, the number of cycles to execute the line drawing
method, and the resulting clock cycles per bytecode. However, it
has to be noted that this program contains mostly simple bytecodes
and no method invocations. The 16-bit architecture of Leros leads
to less code and shorter execution time than the 8-bit PIC micro-
controller. The instruction memory number is smaller in this table
as given before, as the input data is hard coded instead of being
read from the UART.

5e.g., a PIC18F67K22, see http://ww1.microchip.com/
downloads/en/DeviceDoc/39960d.pdf

Table 2: Comparison of Muvium for Leros and PIC
Instructions Execution time Cycles/bytecode

Processor (byte) (clocks) (clocks)

Leros 574 1577 2.2
Microchip PIC 1326 5196 7.1

6. CONCLUSION
In this paper we presented the probably smallest embedded Java

system currently available. It consists of a tiny soft-core imple-
mented in an FPGA and an ahead-of-time compiler that is opti-
mized for generating a small footprint JVM and Java application.

With this system we open the path to use Java in very small mi-
crocontroller applications. With Leros a few lines of Java code can
implement intelligent peripherals in software, for example a fully
software implemented serial interface. As the Leros processor is
available in open-source and the Leros port of Muvium is freely
available, we hope to see many micro-Java projects building up the
Java Dust.

As future work we will explore a many-core version of Leros
and mapping of channel-based communication between the cores
into embedded Java. Furthermore, we will evaluate how additional
instructions in Leros might help the efficiency of the JVM without
increasing the hardware resources too much.
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