

## **COURSE UNIT DESCRIPTION**

| Course unit title              | Course unit code                            |  |  |
|--------------------------------|---------------------------------------------|--|--|
| Methods of computer program co | 5BIOMC                                      |  |  |
|                                |                                             |  |  |
| Lecturer(s)                    | Lecturer(s) Department where the            |  |  |
| Coordinator: Saulius Gražulis  | Department of Mathematical Computer Science |  |  |
|                                | Faculty of Mathematics and Informatics      |  |  |

| Other lecturers:     | Vilnius University      |  |  |  |
|----------------------|-------------------------|--|--|--|
|                      |                         |  |  |  |
| Cycle                | Type of the course unit |  |  |  |
| 1 <sup>st</sup> (BA) | Compulsory              |  |  |  |

| Mode of delivery | Semester or period when the course | Language of instruction |
|------------------|------------------------------------|-------------------------|
|                  | unit is delivered                  |                         |
| Face-to-face     | 5 semester                         | Lithuanian (English)    |

| Prerequisites                                                                          |
|----------------------------------------------------------------------------------------|
| Prerequisites: Perl programming language, introduction to informatics, data structures |
| <b>Desirable knowledge:</b> linear algebra, operating systems                          |

| Number of credits<br>allocated | Student's workload | Contact hours | Individual work |
|--------------------------------|--------------------|---------------|-----------------|
| 5                              | 130                | 50            | 80              |

| Puri | oose of th | e course unit: | programme com | petences to be | developed |
|------|------------|----------------|---------------|----------------|-----------|
|      |            | e course units |               | perenees to se | actopea   |

Purpose of the course unit is to provide students with basic skills of efficient software construction for the purpose of bioinformatics data processing: students should learn how to use version control systems for program release cycle management, automated testing for improvement of software quality. Students will get acquainted with the benefits of consistent programming style, software verification, and will learn to work efficiently in Unix-like operating system environments (for instance, in a GNU/Linux system).

This course is intended as a prerequisite for the course of structural bioinformatics, where the acquired skills and knowledge will be used to write programs for bioinformatics and to process bioinformatics data.

## Generic competences:

Othon lostunous

- Ability to search, analyse, represent and organise the information (GK1).
- Ability to apply the knowledge in practice (GK2).
- Ability to organise and plan the work, to work in a team as well as individually, ability to interact with the professionals of different areas. (GK3).

## Specific competences:

- Algorithms and data structures (SK5).
- Programming models and internet technology (SK6).
- Software engineering (SK8).
- Extracting, representation and analysis of bioinformatics data (SK11).

| Learning outcomes of the course unit:<br>students will be able to                              | Teaching and learning methods                                                             | Assessment methods                       |
|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------|
| Use efficiently Unix-like computer environ-<br>ments for software production and data pro-     | Lectures, seminars, problem-based learning,<br>individual assignments, practical classes, | Midterm exams; final exam; topic-related |
| cessing.                                                                                       | self-study.                                                                               | practical assignment                     |
| Understand the basic concepts of version con-<br>trol; use the Subversion version control sys- |                                                                                           | evaluation, practical work report.       |
| tem efficiently for software development.                                                      |                                                                                           |                                          |

| Understand the necessity, benefits and limita- |
|------------------------------------------------|
| tions of software testing; use the automated   |
| testing environment based on GNU Make util-    |
| ity for their own programs.                    |
| Perform the basic program verification steps.  |
| Write a readable, easy to maintain program     |
| code.                                          |
| To understand the basic concepts of the mod-   |
| ern programming techniques such ax agile       |
| programming extreme programming (XP), test     |
| driven development ad to apply the basic ele-  |
| ments of these techniques in practice.         |

|                                                                                            |          |           | Co       | ontact   | Individual work: time<br>and assignments |               |                 |             |
|--------------------------------------------------------------------------------------------|----------|-----------|----------|----------|------------------------------------------|---------------|-----------------|-------------|
| Course content: breakdown of the topics                                                    | Lectures | Tutorials | Seminars | Practice | Laboratory work                          | Contact hours | Individual work | Assignments |
| 1. Basic principle of the Unix architecture, file                                          | 4        |           |          | 2        |                                          | 6             | 7               |             |
| system, commands                                                                           |          |           |          |          |                                          |               | 14              |             |
| 2. Version control and Subversion                                                          | 4        |           |          | 2        |                                          | 6             | 14              |             |
| 3. The Unix programming environment; the GNU<br>Linux systems and their capabilities       | 4        |           |          | 4        |                                          | 8             | 14              |             |
| 4. Automated program building and testing using the GNU Make tool                          | 8        |           |          | 4        |                                          | 12            | 14              |             |
| 5. The use of Unix-like environments and of the GNU Make system for data processing        | 4        |           |          | 4        |                                          | 8             | 14              |             |
| 6. Program verification and correctness proofs; their application for everyday programming | 4        |           |          |          |                                          | 4             | 7               |             |
| 7. The history and advanced features of Unix and                                           | 4        |           |          |          |                                          | 4             | 7               |             |
| Linux OSes                                                                                 |          |           |          |          |                                          |               |                 |             |
| 8. Preparation for a exam, exam                                                            | 2        |           |          | 16       |                                          | 2             | 3               |             |
| Total                                                                                      | 34       |           |          | 16       |                                          | 50            | 80              |             |

| Assessment strategy  | Weight | Deadline      | Assessment criteria                                            |
|----------------------|--------|---------------|----------------------------------------------------------------|
|                      | %      |               |                                                                |
| Classwork assessment | 10     | Day of the    | A quiz (virtual learning environment) of 4 questions from      |
|                      |        | lecture or    | topics the topics covered in the previous lectures. The scores |
|                      |        | practical     | from all answers in all quizzes are summed up; maximal sum     |
|                      |        |               | is 100 points.                                                 |
| Midterm exam         | 15     | Middle of the | Test (virtual learning environment) including questions from   |
|                      |        | course        | the topics learned so far; maximum score from this test is 150 |
|                      |        |               | points.                                                        |
|                      |        |               |                                                                |

| Assessment strategy                           | Weight % | Deadline                                                                                                           | Assessment criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Assessment of<br>individual assignments       | 50       | After each<br>assignment,<br>according to<br>the schedule<br>provided in the<br>Virtual<br>Learning<br>Environment | Students must upload their assignment to the Virtual Learning<br>Environment. The evaluation criteria of each practical<br>assignment will include: achievement of the goals set for the<br>practical work, coding style and readability of the code,<br>general knowledge on the subject. Evaluation will be<br>conducted using subtractive method: an assignment that was<br>carried out ideally will be worth 100% of the score; each<br>deficiency will attract negative scores depending on its<br>importance (the importance and the nature of the deficiency<br>will be explained). Additional (bonus) assignments may be<br>issued to help students to correct the previous deficiencies.                                                                                                            |
| Presentation of the<br>practical work results | 10       | Last week of<br>the course                                                                                         | Students must upload a report (type-setted according to the presentation standards of the Vilnius University) to the Virtual Learning Environment and prepare a $5 - 10$ min. talk on his/her work. Evaluation criteria will include: achievement of the goals set for the practical work, understanding of the topic (as judged from the answers to several topic related questions), written presentation of the work, oral presentation. The evaluation will be carried out either using the Moodle Rubric method or the subtractive method, as for the assignments.                                                                                                                                                                                                                                      |
| Exam                                          | 15       | Exam session                                                                                                       | <ul> <li>Approx. 30-question quiz covering several recent lectures (Bloom's 1 to 9 level questions) using an electronic teaching environment (Moodle, Open edX or similar).</li> <li>To be eligible for the exam, students must fulfil all following criteria: <ol> <li>carry out at least one practical work and get a positive grade for the practicals;</li> <li>have enough accumulated points to be able to pass the exam in principle if they score maximum points at the exam quiz;</li> </ol> </li> <li>Participation in the final exam quiz is obligatory to pass the course, regardless of the accumulated points. Students who do not show up in the final exam will be indicated as such in the exam grading report. To pass the exam, on must score at least 50% of possible points.</li> </ul> |
| Total                                         | 100      |                                                                                                                    | The final mark is obtained by summing up points earned in all quizzes and tests (summing up to 1000 points), dividing by 100 and rounding to the next largest integer (thus a sum, for instance, of 901 point would give the final mark 10).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| External students                             |          |                                                                                                                    | Taking the exam as an external student is permitted by the decision of the lecturer coordinating the subject. As a rule, taking exam as an external student is permitted for very good students (with the academic average of at least 8) who are able to master the subject on their own and only need a knowledge assessment by a qualified VU representative. The requirements that apply to an external student are the same as those to a regular course attendee. A student applying for external student status may not have academic debts; only non-academic debts are permitted.                                                                                                                                                                                                                   |

| Author                     | Publ. | Title                | Number | or | Publisher or URL              |
|----------------------------|-------|----------------------|--------|----|-------------------------------|
|                            | year  |                      | volume |    |                               |
| Required reading           |       |                      |        |    |                               |
| Ben Collins-Sussman, Brian | 2011  | Version control with |        |    | O'Reilly Media, Inc.,         |
| W. Fitzpatrick, C.         |       | Subversion           |        |    | http://shop.oreilly.com/      |
| Michael Pilato             |       |                      |        |    | product/9780596004484.do,     |
|                            |       |                      |        |    | ISBN 978-0596510336,          |
|                            |       |                      |        |    | http://svnbook.red-bean.com/. |

| Author                  | Publ. | Title                    | Number | or | Publisher or URL                |
|-------------------------|-------|--------------------------|--------|----|---------------------------------|
|                         | year  |                          | volume |    |                                 |
| Richard M. Stallman,    | 2010  | GNU Make                 |        |    | Free Software Foundation,       |
| Roland McGrath, Paul D. |       |                          |        |    | http://www.gnu.org/software/    |
| Smith                   |       |                          |        |    | make/manual/                    |
| Kernighan, Brian W.     | 1984  | The UNIX programming     |        |    | Prentice-Hall, Inc.; ISBN 0-13- |
|                         |       | environment              |        |    | 937681-X                        |
| Recommended reading     |       |                          |        |    |                                 |
| Wikipedia               | 2013  | Test-driven development  |        |    | http://en.wikipedia.org/wiki/   |
|                         |       |                          |        |    | Test-driven_development         |
| Kent Beck               | 2003  | Test-Driven Development  |        |    | Addison-Wesley, Boston,         |
|                         |       | By Example               |        |    | ISBN-13: 978-0321146533         |
| Kent Beck, Erich Gamma  | 2005  | Extreme Programming      |        |    | Addison-Wesley, Boston,         |
|                         |       | Explained: Embrace       |        |    | ISBN-13: 978-0321278654         |
|                         |       | Change, 2nd Edition (The |        |    |                                 |
|                         |       | XP Series)               |        |    |                                 |
| Bourne, S. R.           | 1983  | The UNIX system          |        |    | Addison-Wesley, Boston, ISBN    |
|                         |       | -                        |        |    | 0-201-13791-7                   |