Filters, microlanguages and Shell scripts

Saulius Grazulis

2009 ruduo

Vilnius University, Faculty of Mathematic and Informatics
Institute of Informatics
%\)NIVE

S UNIVER
% S sty
1579 %, <,
2
5 2 Z
g % B
c @ B
EA 653 % &
Siras NS G

This set of slides may be copied and used as specified in the @'

Attribution-ShareAlike 4.0 International license

Saulius Grazulis

and Shell

2009 ruduo 1/13

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

@ Filter — a program which reads its standard input and
writes its output to standard output
e Command cat can act as a filter:

o sh> echo "I Dalis" | cat - I-d.txt pabaiga.txt >
pirma-dalis.txt

Saulius Grazulis Filters, microlanguages and Shell scripts 2009 ruduo 2/18

Get Regular ExPression

grep

@ Usage: grep [OPTION]... PATTERN [FILE]...

e command grep searches for lines matching regular
expression PATTERN in its standard input or files supplied
as its arguments.

e Eg.:

o sh> grep root /etc/passwd

@ root:x:0:0:root:/root:/bin/bash
@ sh> cat 1.dat 2.dat 3.dat | grep AVERAGE
°

@ grep patters usually contain shell metasymbols thus it is
recommended to provide patterns in quotes.

Saulius Grazulis Filters, microlanguages and Shell scripts 2009 ruduo 3/138

grep regular expressions

@ Ordinary symbols (letters, digits) match themselves

“ 9

@ Decimal dot (“.”) — matches any single symbol

@ Symbols or their ranges in brackets (“[]”) - match any
symbol from the given set

@ Asterisk (“*”) — modifies preceding regular expression to
match it O or more times

Saulius Grazulis Filters, microlanguages and Shell scripts 2009 ruduo

grep regular expressions

@ Question mark (“?”) — modifies preceding regular expression
to match it zero (0) or one (1) time

@ Caret (“"") — matches the beginning of the line
@ Doller sign (“$”) — matches the end of the line

@ Backslash (“\”) — makes the following symbol lose its special
meaning

Saulius Grazulis Filters, microlanguages and Shell scripts 2009 ruduo 5/13

grep usage examples

sh> grep 'Part I' book.txt

sh> grep 'ATOM ' 1knv.pdb

sh> grep '“ATOM' 1knv.pdb

sh> grep '“ATOM ' 1knv.pdb

sh> grep 'SCALE[123]' 1knv.pdb
sh> grep '"SCALE[1-9]' 1knv.pdb

Saulius Grazulis Filters, microlanguages and Shell scripts 2009 ruduo 6/13

Handling PDB files with *x commands — examples

Each line of a PDB file (“record”) starts with 6-symbol keyword;
data values are located in fixed columns of a record (e.g. name
of a chain is provided in 22 position of ATOM record).

@ Selects only ATOM records from a PDB file:
sh> grep 'TATOM,,' 1lknv.pdb
sh> grep "“ATOM_,," 1lknv.pdb
@ Selects only CRYST, ATOM, HETATM and END records from
a PDB file (-E argument stands for “use extended regular
expression”):
sh> grep -E '~(CRYST1|ATOM,,,|HETATM|END)' \ 1knv.pdb
@ Lists chains in a PDB file:
sh> grep -E '~ (ATOM_,, |HETATM)' 1knv.pdb \
| cut -b 22-22 | sort | uniq

Saulius Grazulis Filters, microlanguages and Shell scripts 2009 ruduo 7/13

sed microlanguage

@ Usage: sed [OPTION]... script [input-file]...
@ sh> echo -e "vienas\ndu\ntrys" > tekstas.txt
@ sh> cat tekstas.txt

vienas

du

trys
@ sh> sed -e 's/vienas/1/' tekstas.txt

1

du

trys
@ sh> sed -e 's/d./2/' tekstas.txt

vienas

2

trys

Saulius Grazulis Filters, microlanguages and Shell scripts 2009 ruduo

awk programming language

Aho, Weinberger, Kernighan

Program awk allows, as does grep, select lines of a file by
matching them using regular expressions (written between
slashes, /.../). Moreover, each matching line can be processed
using tiny program (written in curly braces, {...3}).

@ Usage: awk [POSIX or GNU style options] -f progfile [] file ...
Usage: awk [POSIX or GNU style options] [-] program’ file ...

@ sh> awk '/PATTERN/ { print }' book.txt

@ sh> awk '/"XYZ/ { if($1 > 0) print }' coord.dat

Saulius Grazulis Filters, microlanguages and Shell scripts 2009 ruduo 9/18

Other prominent *x filters

GNU systems (like Linux) have many useful filters; some of
them are listed below. For more information see 'info
coreutils' (GNU coreutils package description).

@ tr — “translate” — replaces requested symbols by other
symbols, or removes them altogether (with -d option):
@ sh> tr "\r" "\n" < book.mac-txt > book.linux-txt
@ sh> tr -d "\r" < book.dos-txt > book.linux-txt

@ wc — “word count” — counts lines, words and symbols in
given files. Counts only lines (with -1 option), only words
(with -w option) or only symbols (with -c option):

@ sh> wc book.txt

@ sh> wc -w < book.txt

e Counts .txt files in working directory:
sh> 1s *.txt | we -1

e Counts atoms in PDB files:
sh> grep '“ATOM ' *.pdb | wc -1

Saulius Grazulis Filters, microlanguages and Shell scripts 2009 ruduo

Perl as command line filter

Perl programming language can be used to write short
scripts-filters in the command line:

@ Finding the ASCII code of a symbol:
o sh> perl -e 'printf "Yd\n", ord("A")'
@ sh> perl -e 'printf "0x%02X\n", ord("A")'
@ Modify each line with regular expression and print it (sed
analogue):
o sh> perl -pe 's/mine/yours/g' *.txt
@ Modify each line with a Perl program; modified line is
printed afterwards (awk analogue):
o sh> perl -ne 'print unless /“\s*$/' *.txt

Saulius Grazulis Filters, microlanguages and Shell scripts 2009 ruduo

An example of more complex task

Find anagrams (words produced by permutations of the same
letters) in text files. E.g. words “lime” and “mile” are anagrams.

Producing all the anagrams would be impractical (~ n!
combinations for each word of length n)

Solution: sort (order) letters of words and use the generated
lines as keys to identify anagrams.

Saulius Grazulis Filters, microlanguages and Shell scripts 2009 ruduo 12 /13

A program for anagram search

@ anagrams.sh:

#!/bin/sh
Find all words that are anagrams in input files
cat $x \
I tr "\r\tll II_’II \
| perl -040 -1012 -ne 'print' \
| perl -CS -1lne 'print join("",sort(split(""))), ", ", $_' \
| sort -k1 | umniq \
| perl -lane \
'sub print_anagrams (@) {
ifC e_ > 1) {
for(@_) { print $_->[1] }; print ""
}
}
if('ep || $pl[0]1[0] eq $F[0]1) {
unshift (@p, [QF])
} else {
print_anagrams(Qp);
@p=([@F])
}
END {
print_anagrams(@p);

Filters, microlanguages and Shell scripts 2009 ruduo

