Checking validity of input data

When analysing large amounts of data we are constantly confronted with a
question: are input and intermediate data in a right form, and do they conform
to processing programs’ input requirements? Deviations from the correct input
can be present already in the input data, or can be caused by mistakes in the
processing pipeline. For sure such deviations can distort computation results
and lead to incorrect conclusions.

Here are three simple methods how you can check, and with one method even
validate, the inputs and outputs of your programs. The first three examples will
be applicable to data in tabular form, the one that is most naturally obtained
from GNU /Linux and Unix tools, and the one which we used in our experiments.
The example of such file is given below:

saulius@varanas 3rd-assignment/ $ head -n 4 frequency.lst
860 10.1038/ncomms15123
364 10.1016/j.str.2016.06.010
152 10.1016/j.tube.2014.12.003
86 10.1021/jm200642w

Method 1. Count the columns

Count number of columns in each of your data files. The number of columns
must be the same in all lines, except maybe the file header or comments (which
you can easily filter out with ‘grep’). The column number must also be suitable
for the next processing program. Number of columns can be easily obtained by
printing out the ‘awk’ NF (“Number of Fields”) variable:

saulius@varanas 3rd-assignment/ $ awk '{print NF}' frequency.lst | uniq -c | head
27618 2

137709 4
30364 2

As you see, in this case some lines (in fact, a lot — 137709 of them!) have four
columns, which is already suspicious. You can print out such columns with
‘awk’:

saulius@varanas 3rd-assignment/ $ awk '{if( NF > 2 ) print NR, $0}' frequency.lst | head -2
27619 1 ==> ./outputs/downloads/pdb/9x/9xim.biblst <==
27620 1 ==> ./outputs/downloads/pdb/9x/9xia.biblst <==

The NR variable holds the current line number, so you also obtain the position
of the “strange” lines in the file.

As a historical digression we can note that the method reminds the one used
by Masoretes to count letters in each line of hand-written manuscript copies



(https://en.wikipedia.org/wiki/Masoretic_ Text#Numerical Masorah), S0
that various copying mistakes can be detected.

I use this method every time I get data tables, can can highly recommend it to
you.

Method 2. Check the random sub-sample of your data

Inspecting head and tail of your (large) data tables is a good habit, but what of
faulty lines are in the middle? In this case, inspecting a random sample of your
data lines may help, especially of the faulty lines are not to rare. The ‘shuf’
GNU tool will give you such sample:

saulius@varanas 3rd-assignment/ $ shuf frequency.lst | head -n 4
1 ==> ./outputs/downloads/pdb/4h/4hr4d.biblst <==
1 10.1016/J.8TR.2005.07.025
1 ==> ./outputs/downloads/pdb/2f/2fsg.biblst <==

2 10.1110/PS.03518104

As you see, the problematic lines show up immediately. Of course you will not
find them that easily of there is just one or two such lines among hundreds of
thousands. To increase the probability of detecting faulty lines, you can run the
‘shuf ...” pipeline several times.

Method 3. Check lines using regular expressions.

Since your data must follow certain syntax, it is nearly always possible to write a
regular expression that matches correct lines. Then, you can invert you selection
to get incorrectly formatted lines, and you can select the correct lines for further
processing using ‘grep’. Perl Compatible Regular Expressions (PCRE) are worth
considering because of their power and ease of use. They are supported by ‘perl’
and GNU ‘grep -P’ commands:

saulius@varanas 3-homework-assignment/ $ head -2 frequency.lst
860 10.1038/ncomms15123
364 10.1016/j.str.2016.06.010
saulius@varanas 3-homework-assignment/ $ grep -P '~\s*[0-9]+\s+10\.[0-9]+/' frequency.lst |
860 10.1038/ncomms15123
364 10.1016/j.str.2016.06.010
saulius@varanas 3-homework-assignment/ $ grep -v -P '~“\s*[0-9]+\s+10\.[0-9]+/' frequency.ls!
1 ==> ./outputs/downloads/pdb/9x/9xim.biblst <==
1 ==> ./outputs/downloads/pdb/9x/9xia.biblst <==
saulius@varanas 3-homework-assignment/ $ grep -v -P '~“\s*[0-9]+\s+10\.[0-9]+/' frequency.ls!
1 ==> ./outputs/downloads/pdb/10/100d.biblst <==
1 10.1126
saulius@varanas 3-homework-assignment/ $ grep -v -P '“\s*[0-9]+\s+10\.[0-9]+/' frequency.lsH



1 10.1126

With this check, we see that there is a line with the wrongly formatted DOI,
present just once on all text. Thus, regular expressions, although they take some
time and ingenuity to compose, allow you to make a very thorough filtering of
your data.

We can use ‘find’ to figure out where does the misformatted DOI line come
from:

saulius@varanas Ol-darbas/ $ find ~/GNU-type-0S/data/rsync-demo/saulius-grazulis.lt/outputs,
/home/saulius/GNU-type-0S/data/rsync-demo/saulius-grazulis.lt/outputs/downloads/pdb/1u/1u04

Fetching data from the PDB shows that the misformatted data item come from
the PDB:

saulius@varanas Ol-darbas/ $ curl -sSL https://www.pdb.org/pdb/files/1u04.cif | grep _DOI
_citation.pdbx_database_id_DOI 10.1126

Method 3 expanded: check data against schema

Regular expressions are just the simplest for of grammars that allow you to
check whether your data conform to some specific syntax. They work for any
tabular form data; for example, FASTA or PDB files can also be validated using
regexps. For more structures formats, like XML, CIF or JSON, more elaborate
checks exists:

a) for XML files, you can use XML schema to check data:

saulius@varanas 01-darbas/ $ curl -sSL https://www.pdb.org/pdb/files/1u04.xml
> 1u04.xml

saulius@varanas 01-darbas/ $ grep schemalLocation 1u04.xml xsi:schemalocation="http://pdbml.pdb.org
v50.xsd pdbx-v50.xsd”>

saulius@varanas 01-darbas/ $ xmllint —schema http://pdbml.pdb.org/schema/pdbx-
v50.xsd —noout 1u04.xml 1u04.xml validates

Note that although XML schema allow to specify regexps to check structure of
values (such as DOI) in .xml files, the current XML schema fails to discover the
faulty DOI.

b) for CIF files (crystallographic interchange files), validation against CIF
Dictionaries has the same function as ‘xmllint’ validation against XML
schema; see our on-going work in cod-tools (https://github.com/cod-
developers/cod-tools)

c) for JSON files, a similar schema are being developed (http://json-
schema.org/); validating can be performed using Perl JSON::Validator
module. On Ubuntu and LinuxMint, install libjson-validator-perl package
(‘apt install libjson-validator-per!’), and then use a Perl wrapper (our



one can be fetched here: svn://saulius-grazulis.lt/scripts/json-validator,
fetch with, e.g., ‘svn co svn://saulius-grazulis.lt/scripts’ or ‘svn cat
svn:/ /saulius-grazulis.lt /scripts/json-validator’).



	Checking validity of input data
	Method 1. Count the columns
	Method 2. Check the random sub-sample of your data
	Method 3. Check lines using regular expressions.
	Method 3 expanded: check data against schema


